ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

MIT ‘DarkLight’ experiment seeks to create dark matter in the lab

Tibi PuiubyTibi Puiu
October 28, 2013
in Physics, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Map of the earliest recorded light paints broad picture of the ancient Universe
We know something more about dark energy: it isn’t a fundamental force
Huge Dark Energy survey charts largest 3D map of the universe stretching 11 billion years. The results could change physics
Dwarf satellite galaxies are challenging the standard cosmological model

Mysterious and elusive, dark matter has escaped scientists time and time again; yet confirming its existence is quintessential to current efforts of studying the Universe. With this in mind, detecting dark matter has become one of the foremost goals in the physics of the 21st century. An experiment at MIT, called DarkLight, aims to prove or disprove a certain theory that provides a possible solution to uncovering dark matter by creating its constituent bosons in the lab.

Dark matter is said to make about 23% of the mass-energy density of the universe, in comparison to only 4% normal matter (the matter we can observe), while the rest of the mass-energy density is comprised of dark energy. Dark matter makes up more than half of the total mass of most galaxies, including our own Milky Way, and is known to extend well beyond the visible stars. If models are correct, than dark matter is ubiquitous, even in our solar system yet detecting it has proved to be a herculean challenge.  Since it was first proposed in the 1930s, numerous theories have tried to account for and provide ways of identifying dark matter. So far there have been no confirmed identifications of dark matter with any known — or postulated — candidate.

 Photograph of the prototype constructed by the GEM-TPC collaboration. (C) MIT
Photograph of the prototype constructed by the GEM-TPC collaboration. (C) MIT

One piece of the puzzle is currently being investigated by the DarkLight experiment at MIT. The experiment seeks to prove or disprove a theory which says dark matter is made up of  bosons in the 10 MeV to 10 GeV range – heavy photons dubbed A′ (pronounced “A-prime”). The exact mass of such a particle (if it exists) is unknown.

DarkLight will use Jefferson Lab’s Free Electron Laser to bombard an Oxygen target with a stream of high energy electrons with one megawatt of power, and hopefully create this form of theorized dark matter (A’ particles). Studying the  resonance peak at the A′ mass in the electron-positron invariant mass spectrum would provide the valuable clues necessary to prove or disprove the presence of dark matter through this experiment.

It might take a while before this will happen though. According to the report released by MIT, it will take a couple of years before the DarkLight experimental rig will become operational and another couple of years of smashing electrons to collect data before any conclusive ideas can be drawn.

via ExtremeTech

Tags: bosondark energydark matter

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

byJordan Strickler
2 days ago
News

Astronomers Say They Finally Found Half the Universe’s Matter. It was Missing In Plain Sight

byTibi Puiu
2 months ago
Astronomy

Scientists Take “Baby Picture” of the Infant Universe and Then Weigh It. Here’s What Its First 380,000 Years Tell Us

byMihai Andrei
3 months ago
News

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

byTibi Puiu
3 months ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.