Octopods are great at camouflage — they even surpass the ability of chameleons. But how does their camouflage system work?

The secret is chromatophores – skin cells that contain different pigments that are wired to the nervous system and to a radial muscle structure that allows it to change in length and thus change the color saturation of the cell. Each chromatophore is linked to the nervous system by a neuron, making the color change happen in less than a second.

 

They are also able to mimic textures via projections on the skin named papillae and can mirror the environment through iridophores —- reflective cells found in the octopi’s skin tissue.

Scientists have long been trying to develop the perfect camouflage system. Even though they succeeded to make objects invisible to the naked human eye, infrared cameras, that allow us to see temperature variations in colors would still be able to detect them because the electrical components that made visual camouflage possible would heat up, demonstrating their bluff.

So, researchers tried to imitate Mother Nature’s design: the octopod’s chromatophores. By combining special electrodes, wrinkled membranes, and an infrared-reflective coating, Chengyi Xu and colleagues created a synthetic device that mimics cephalopod skin. When applying an electrical current, the membrane expands, reflecting more light of a given wavelength. When the electrical current stops flowing through it, the membrane contracts. You can see below how the membrane reacts to electrical stimuli.

Researchers created a squid-shaped version of the device and analyzed its ability to camouflage. Then, they used an infrared camera to measure the changes in the device’s temperature. Scientists report that altering the reflectance of the device so that its temperature changed by a mere 2°Celsius was sufficient to mask its existence from an infrared camera.

RELATED  Futuristic Urban Algae Folly Grows Food, Fuel, and Shade

Who knows — maybe in the future we could buy octopus skin clothes and activate them when encountering our exes.

Enjoyed this article? Join 40,000+ subscribers to the ZME Science newsletter. Subscribe now!

Like us on Facebook