ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Research → Inventions

Creating the smallest Mona Lisa – just 30 microns across

Mihai AndreibyMihai Andrei
August 7, 2013
in Inventions, Nanotechnology
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Creating glasses that don’t fog up
“No small matter: Science on the nanoscale” review
Scientists devise invisibility cloak [VIDEO]
The most sensitive scale in the world can measure to the yoctogram (proton’s mass)

Mona Lisa is probably the most well known picture in the world – it’s been painted thousands of times, inspired countless artists, and her enigmatic smile still puzzles researchers and artists alike; but never before has it been painted on such a small canvas.

Picture source
Picture source

Demonstrating a very potent nanotechnique, researchers have made a miniature Mona Lisa that stretches 30 microns across – about a third of the width of a human hair. The team from Georgia Tech created the molecular masterpiece using an atomic force microscope and a process which they have called ThermoChemical NanoLithography, or TCNL for short.

Thermochemical nanolithography (TCNL) employs heated nano-size tips to create heat which activates chemical reactions to change the functionality of a nanoscale surface  or obtain new nanostructures. It’s not a novel technique, being used for the first time in 2007, also at Georgia Tech.

The pixels of the “Mini Lisa” each measure 125-nanometer , and they are basically a confined set of chemical reactions. By controlling the amount of heat which goes into the molecules, researchers influenced the shade of grey of every ‘pixel’ – making this extremely small work of art a brilliant demonstration of TCNL’s ability to make variations in molecular concentrations on this extremely small scale. This has the potential to be applied in nanoscale manufacturing.

“We envision TCNL will be capable of patterning gradients of other physical or chemical properties, such as conductivity of graphene,” study researcher Jennifer Curtis said in a statement. “This technique should enable a wide range of previously inaccessible experiments and applications in fields as diverse as nanoelectronics, optoelectronics and bioengineering.”

This is not the first time the Mona Lisa has been used in science – earlier this year, NASA beamed the famous image to the Moon, using a very powerful laser.

The findings were detailed in the Journal Langmuir.

Tags: mona lisananoscalenanotechnology

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Future

World’s Smallest Violin Is No Joke — It’s a Tiny Window Into the Future of Nanotechnology

byTibi Puiu
2 months ago
Future

Researchers create contact lenses that let you see in the dark, even with your eyes closed

byMihai Andrei
3 months ago
Biology

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

byMihai Andrei
4 months ago
Biology

Tiny “Water Bear” Protein Could Help Shield Cancer Patients From Radiation

byAlexandra Gerea
6 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.