ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Astronomy

IBM to develop world’s most powerful computing system tasked with finding origins of Universe

Tibi PuiubyTibi Puiu
April 2, 2012 - Updated on October 27, 2017
in Astronomy, Research, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

Backed by an international consortium, ten years from now the world’s largest and most sensitive radio telescope in the world will be built – the Square Kilometer Array (SKA). The project will consist in thousands of antennas displaced across thousands of miles, with a collecting area equivalent to one square kilometer (hence the name), that will hopefully help astronomers take a peek at the Universe’s closest moments after the Big Bang. However, such a grand scientific effort requires an equally humongous computing power, one that only seven million of today’s fastest computers could match. Recently, IBM has been granted the privilege to research the exascale super computing system to be integrated with the SKA, after it won the $42 million contract to work with the Netherlands Institute for Radio Astronomy (ASTRON).

IBM has thus marched for the Herculean task of developing a solution that will match SKA’s need for reading, storing and processing one exabyte of raw data per day. An exabyte is the equivalent of 1,000,000 terabytes or 12,000,000 latest generation iPods fully stored. If you didn’t quite get the scale involved, consider that one exabyte roughly equals two days worth of global internet traffic. Massive!

In Drenthe, Netherlands, ASTRON and IBM will look at energy-efficient exascale computing, data transport at light speed, storage processes and streaming analytics technology. “We have to decrease power consumption by a factor of 10 to 100 to be able to pay the power bill for such a machine,” said Andreas Wicenec, head of computing at the International Centre for Radio Astronomy Research in the state of Western Australia.

With this purpose in mind, the researchers are currently investigating advanced accelerators and 3-D stacked chips, architectures already proven to be highly energy-efficient at IBM labs. Also, they’ll have a look at how they can optimize huge data transfers by using novel optical interconnect technologies and nanophotonics. For the task at hand, 50 people, along with astronomers from 20 countries, will work to build the most complex super-computing system in the world for the next five years.

Artist impression of the  SKA radio telescope were it to be built in Australia. (c) SKA Program Development Office
Artist impression of the SKA radio telescope were it to be built in Australia. (c) SKA Program Development Office

“To detect the signals, you really need a good antenna,” said Ronald Luitjen, an IBM scientist and data motion architect on the project. “It would be the equivalent of 3 million TV antennae dishes. This will be a unique instrument. Nothing else can do this kind of science.”

Radio telescopes in operation today are very powerful, but SKA will be in a whole different league. It will provide a real-time all-sky radio survey, on the lookout for some of the Universe’s most strange phenomena, unexplored with today’s technology. The telescope will be used to explore evolving galaxies, dark matter, look for complex organic molecules in interstellar space and study data from the Big Bang, the primordial cosmic event which gave birth to anything matter and anti-matter in the Universe more than 13 billion years ago. All these, you guessed it, require a huge computing effort – hopefully it’s to be served in the coming years before the SKA’s completion in 2024.

The $2 billion SKA will be located either in Australia/New Zealand or South Africa, with the latter being currently most favored. These regions were selected because of their low radio pollution. Nevertheless, the scientists involved in the project are looking at the bright side of the lengthy completion time. “It is really relying on the fact that technology is improving at a certain rate,” said Andreas Wicenec, head of computing at the International Centre for Radio Astronomy Research in the state of Western Australia. Well, how about quantum computing?

RelatedPosts

Obama sets Mars goal for America in less than 20 years
Massive dark energy survey launched set to probe its secrets
The World’s Largest Camera Is About to Change Astronomy Forever
Green visitor to pass through the solar system

The SKA might hold the key to unlocking some of the Universe’s well kept secrets today, and, if anything, it will open a new era of computing, with ramifications in all spheres of science.

Tags: big bangexabyteIBMsupercomputertelescope

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Physicists Make First Qubit out of Antimatter and It Could One Day Explain Why the Universe Exists At All

byTibi Puiu
3 weeks ago
News

The World’s Largest Camera Is About to Change Astronomy Forever

byTibi Puiu
2 months ago
black hole
News

Astronomers Claim the Big Bang May Have Taken Place Inside a Black Hole

byJordan Strickler
2 months ago
News

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It’s At Least 25 Times Stronger Than Any Supernova

byTibi Puiu
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.