ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Mathematics

Fourier transformation optimized algorithm turns fast into superfast

Tibi PuiubyTibi Puiu
January 20, 2012
in Mathematics, Research, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

fourier transformation The Fourier transformation is arguably the most important algorithm in information technology, with immense applications as well  in optics, signal and image processing, pattern recognition etc. Thanks to this remarkable mathematical operation, we’re able to see videos or listen to music on an iPod, as it turns the digital information into readable frequencies. Recently, MIT scientists have managed to come up with an optimized algorithm of the Fast Fourier Transformation, which was already fast enough as one can imagine. The researchers’ results in some instances had a tenfold increase in processing speed.

In simple terms the Fourier transformation turns signals into frequencies. A simple example as far as applications go is how it can turn voltage signals transmitted through a wire to an mp3 player into sounds rendered through a speaker fast and easy. However, it’s been found indispensable in applications ranging from economics, engineering,  sociology and so on.

In the 1960s the Fast Fourier Transformation algorithm was developed, which provided an absolute breakthrough, still the question remained to this day whether it could be optimized even further. The MIT mathematicians devised the new faster than Fast Fourier Transformation by granting importance to frequencies that “weigh” more and overlooking weak signals.

The algorithm takes a digital signal containing a certain number of samples and expresses it as the weighted sum of an equivalent number of frequencies. Some of these frequencies are more important or “heavy” to the signal, and are thus prioritized. The algorithm slices the signal into narrow bandwidths, each slice containing just one heavy frequency. Each slice is then sliced again and so on once even further until low-weighted frequencies and highly-weighted signals are completely isolated from one another.

In “spare” signals, whose Fourier transforms include a relatively small number of heavily weighted frequencies, the new algorithm can output at lightning speed compared to the old one, as low weight signals are cut out completely with absolutely no loss in quality. “In nature, most of the normal signals are sparse,” says Dina Katabi, one of the developers of the new algorithm.

Considering most of the signals in nature are sparse, and the fact that the FFT was already lightning fast, this new improvement from MIT might have extraordinary consequences. Using your smartphone to wirelessly transmit large video files without draining the battery is just one application, out of countless that might benefit from it.

Read more about the research in technical detail at the MIT press release.

RelatedPosts

Scientists find a faster way to express pi by accident
Laws of mathematics don’t apply here, says Australian PM
Monkeys can do math, study proves
Can Monkeys Type Out Hamlet? Scientists Put the Infinite Monkey Theorem to the Test (And It’s Pretty Funny)

 

Tags: fourier transformationMathematics

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Mathematics

Our Schools Have a Problem: Textbook Math Doesn’t Help in Real Life — and Vice Versa

byMihai Andrei
3 months ago
Mathematics

How To Solve Any Problem Using Enrico Fermi’s Back-Of-The-Envelope Math (And Some Common Sense)

byTibi Puiu
4 months ago
Science

There’s an infinity of infinities. And researchers just found two new infinities that break the rules of math

byTibi Puiu
4 months ago
Future

Opening the AI Black Box: Scientists use math to peek inside how artificial intelligence makes decisions

byTibi Puiu
4 months ago

Recent news

This Startup Is Using Ancient DNA to Recreate Perfumes from Extinct Flowers

May 21, 2025

Jupiter Was Twice Its Size and Had a Magnetic Field 50 Times Stronger After the Solar System Formed

May 21, 2025

How One Man and a Legendary Canoe Rescued the Dying Art of Polynesian Navigation

May 21, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.