ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Other → Great Pics

Your favorite drinks – under the microscope

Mihai AndreibyMihai Andrei
August 11, 2015
in Great Pics, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit
American Amber Ale

Well, microscopic drinks are not really a thing, aren’t they? Not in the clubs where I go, anyway – we like our drinks large. But just stop a moment and think – how would your cocktail or beer look under a microscope? I’d wager this: it’s not like anything you thought.

Bourbon

So, this awesome company called BevShots specializes on microscopic pictures of alcoholic drinks. How do they do this? The pictures were taken after the drinks have been crystallized on a slide and shot under a polarized light microscope. As the light refracts through the beverage crystals, the resulting photos have naturally magnificent colors and composition.

Bloody Mary.

You can buy the printed pictures on the website and use them in your room – this would certainly make for some interesting guest conversation. Just remember: decorate responsibly! To Lester Hutt, president of BevShots, it was just a matter of time before science turned into art.

“I thought to myself that this could do very well as a modern art line,” Hutt says of Davidson’s photographs. “What was nice about it was the images were already all taken; there’s no research that had to go into it.”

English Oatmeal Stout.
Champagne.

But it’s important to note that as you’re looking at these images, you aren’t viewing the actual molecular structure of the alcohol, but rather the crystallized form of the drink, which Davidson achieved by letting a drop of the liquid dry out on a microscope slide. For some drinks, like a piña colada or a margarita, with ingredients other than pure alcohol in them, the crystallization process was fairly straightforward, because the presence of various other particles (like sugar or salt) helped crystals form. But for whiskey or vodka, the process took quite a lot of time – from a few weeks to as much as six months.

Dry Martini.
Vodka.

“If you look at some of the hard liquors, the crystals on those just didn’t form as well as the margarita or martini, because there wasn’t as much dissolved in it to crystallize out. If you have very pure vodka, really all it’s going to be is ethanol and vodka,” Hutt explains. “Those crystals are not as well defined.”

Margarita.
White wine.

Just like snowflakes, no two drinks crystallize alike.

Who always shows up to end the night? Tequila.
Whiskey.
Belgian lambic beer.

 

 

RelatedPosts

How the alcohol industry lies to you
Alcohol is causing a spike in liver diseases — and it’s mostly in young people
There is no ‘safe level’ of drinking alcohol: even low alcohol consumption is bad for you
Male prairie voles that drink alcohol ruin their relationships

 

Tags: alcoholcrystal

Share1TweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

The injectable drug Ozempic is shown Saturday, July 1, 2023, in Houston. (AP Photo/David J. Phillip)
Health

Ozempic Users Are Seeing a Surprising Drop in Alcohol and Drug Cravings

byAlexandra Gerea
2 months ago
Health

Patients on Weight Loss Drugs Like Wegovy May Say They Just Don’t Want to Drink Anymore

byTudor Tarita
3 months ago
Animals

Scientists filmed wild chimpanzees sharing alcohol-laced fermented fruit for the first time and it looks eerily familiar

byTibi Puiu
4 months ago
News

Over 1 in 3 Americans hurt by “second-hand drinking”

byMihai Andrei
5 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.