Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Health

Scientists mass-produce ‘magic mushroom’ active ingredient from bacteria

The study shows that psilocybin can be produced in a sustainable manner.

Tibi Puiu by Tibi Puiu
October 3, 2019
in Health, News

Psilocybin, the active psychoactive compound found in specific mushrooms, is a promising drug that can be used to treat depression, anxiety, addiction, and post-traumatic stress disorder. Looking towards the future, researchers at Miami University have used genetic engineering to coax harmless E. coli bacteria to produce psilocybin.

Psilocybe semilanceata. Credit: Pixabay.

The mushrooms that produce psilocybin, such as Psilocybe cubensis, are not particularly expensive or difficult to grow. However, they do take up a lot of space and require many weeks to mature.

Andrew Jones, a chemical engineer at Miami University, and colleagues figured that a more effective way to grow the chemical compound would be to hijack another organism’s metabolic pathways.

To this aim, the research team engineered the metabolism of the Escherichia coli bacterium so that it would produce psilocybin.

“We are taking the DNA from the mushroom that encodes its ability to make this product and putting it in E. coli,” Jones said. “It’s similar to the way you make beer, through a fermentation process. We are effectively taking the technology that allows for scale and speed of production and applying it to our psilocybin producing E. coli.”

Alexandra Adams. Credit: Miami University.

The moment Jones and Alexandra Adams, a chemical engineering major who performed much of the experimental design, noticed that their research was paying off, they almost couldn’t believe it.

“Once we transferred the DNA, we saw [a tiny] peak emerge in our data. We knew we had done something huge,” Adams said.

After the first signs of psilocybin synthesis, the researchers were able to greatly enhance yield by tweaking the bacteria’s metabolism.

“What’s exciting is the speed at which we were able to achieve our high production. Over the course of this study we improved production from only a few milligrams per liter to over a gram per liter, a near 500-fold increase,” Jones said.

For their next study, Jones and colleagues would like to improve the production of psilocybin from bacteria even further in order to meet sustainable production levels required by the pharmaceutical industry.

The findings appeared in the journal Metabolic Engineering.

Was this helpful?
Thanks for your feedback!
Related posts:
  1. Scientists use yeast to produce ‘magic mushroom’ active ingredient
  2. Magic mushroom therapy helps smokers quit where other methods fail
  3. Magic mushroom drugs show promise in treating addiction and cancer anxiety
  4. For the first time, researchers have shown that drugs like LSD and magic mushrooms produce ‘higher’ level of consciousness
  5. Psilocybin, the active substance in magic mushrooms, inhibits the processing of negative emotions in the brain
Tags: magic mushroompsilocybin

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW