ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Anatomy News

Paralyzed dogs can walk again after nose cell transplant

Tibi PuiubyTibi Puiu
November 20, 2012
in Anatomy News, Animals, Health
A A
Share on FacebookShare on TwitterSubmit to Reddit

In a remarkable medical feat, physicians at Cambridge University have restored movement in the hind legs of 23 dogs after they transplanted nerve cells from the animals’ noses. The results suggest that the procedure might hold similar promising prospects for humans suffering from spinal cord injuries.

The researchers used 34 pet dogs for their experimental procedure, of which 23 had an actual cell transplant, while the rest were injected with a neutral fluid in order to act as a control group.

This is Elemer, a 9 year old Border Collie, who used to need a cart to move about. After surgery, the collie can now move on his own legs. (c) Cambridge University
This is Elemer, a 9 year old Border Collie, who used to need a cart to move about. After surgery, the collie can now move on his own legs. (c) Cambridge University

The cells in question are called olfactory ensheathing cells, and they surround olfactory neurons that allow us to smell. The reason the researchers decided to use these cells is because they’re the only nerve cells in the body that continue to regenerate even through adulthood. As such, they’ve been studied with great interest by specialists in the past years.

After collecting the ensheathing cells from the inner lining of the nose, the scientists then multiplied and refined them in the lab. The batch was then directly injected in the injured part of the body. Soon after, the researchers observed significant improvement in the dogs’ ability to move their back legs, which up until then were completely paralyzed. Many of the pets had to be wheeled around in order to move before the operation.

Using nose cells to restore leg movement

All 23 pets that received the transplant showed considerable improvement and were able to walk on a treadmill with the support of a harness. None of the dogs from the control group which had a neutral fluid injected saw any improvement. Worth noting is that this is the first time ensheathing cells have been used in animals with real-life injuries.

“Our findings are extremely exciting because they show for the first time that transplanting these types of cell into a severely damaged spinal cord can bring about significant improvement.”

“We’re confident that the technique might be able to restore at least a small amount of movement in human patients with spinal cord injuries but that’s a long way from saying they might be able to regain all lost function,” said Professor Robin Franklin, a regeneration biologist at the Wellcome Trust-MRC Stem Cell Institute and report co-author.

After the cells are transplanted in the injury site, they begin to regenerate nerve fibres across the damaged region of the spinal cord. This allows the dogs to slowly, but surely regain the ability of their motor cortices to communicate with their back legs.

Humans, don’t get overly excited – we’re still a long way!

Jasper the dog

RelatedPosts

Electrical stimulation of spinal cord allows two paraplegics to stand and walk
Paralyzed man can stand again after receiving stem cell treatment in Japan
A paralyzed man just piloted a virtual drone using his brain
Wireless brain-interface boasts promising start

As a great shortcoming, the new nerve connections did not occur over the long distances required to connect the brain to the spinal cord. While a similar procedure on paralyzed humans would allow for a significant improvement in movement, it won’t however restore  sexual function and bowel and bladder control.

“This is not a cure for spinal cord injury in humans – that could still be a long way off. But this is the most encouraging advance for some years and is a significant step on the road towards it,” said Prof Geoffrey Raisman, chair of Neural Regeneration at University College London, who discovered olfactory ensheathing cells in 1985.

“This procedure has enabled an injured dog to step with its hind legs, but the much harder range of higher functions lost in spinal cord injury – hand function, bladder function, temperature regulation, for example – are yet more complicated and still a long way away.”

The scientists advise people not too get overly excited over these findings and wait for more trial findings.

“We’re confident that the technique might be able to restore at least a small amount of movement in human patients with spinal cord injuries, but that’s a long way from saying they might be able to regain all lost function,” Frankly said in a statement. “It’s more likely that this procedure might one day be used as part of a combination of treatments, alongside drug and physical therapies,” he continued.

For pet owners, however, like those of Jasper, a 10-year-old dachshund, who could walk again on his own feet after the treatment, even these “small” steps mean the world to them.

“Before the treatment we used to have to wheel Jasper round on a trolley because his back legs were useless. Now he whizzes around the house and garden and is able to keep up with the other dogs. It’s wonderful,” said Jasper’s owner May Hay for BBC.

Findings were published in the journal Brain. Check out the video below, which features Jasper’s extraordinary transformations from being wheeled around to walking on a treadmill.


Tags: nerveolfactory ensheathing cellsparalysis

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

Paralyzed man can stand again after receiving stem cell treatment in Japan

byTibi Puiu
5 months ago
Future

A paralyzed man just piloted a virtual drone using his brain

byMihai Andrei
7 months ago
News

Could electrical stimulation and robot-assisted exercise reverse paralysis? New results are a resounding ‘yes!’

byAlexandru Micu
3 years ago
Health

Scientists find a new way to regrow nerves in spinal injuries

byTibi Puiu
5 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.