ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Mind & Brain

Your memories last as long the neural connections: a long-standing theory now confirmed

Neuroscientists have long posited that memories last as long as the connections in the brain, but putting this theory to test has always proved challenging. Using the latest imaging techniques and sheer innovation, a group at Stanford confirmed this as being true after the researchers literally peered into the brains of mice and studied brain connections as they formed or were replaced. Once the connection was lost, so was the memory.

Tibi PuiubyTibi Puiu
June 26, 2015
in Mind & Brain, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Neuroscientists have long posited that memories last as long as the connections in the brain, but putting this theory to test has always proved challenging. Using the latest imaging techniques and sheer innovation, a group at Stanford confirmed this as being true after the researchers literally peered into the brains of mice and studied brain connections as they formed or were replaced. Once the connection was lost, so was the memory.

Image: Wikimedia Commons
Image: Wikimedia Commons

The group, led by Mark Schnitzer, an Stanford associate professor of biology and of applied physics, focused their efforts on unraveling the physical brain structures that pertain to episodic memories. These are kind of memories that are stored for a limited time then lost if not used, like conversations you had or events which took place in the past couple of weeks or months at most. Episodic memories are stored in the hippocampus, a  a small region of the brain that forms part of the limbic system and is primarily associated with memory and spatial navigation.

Memento

In mice, episodic memories typically last 30 days tops. Humans are somewhat better. When mice have hippocampus-disruptive surgery, those memories formed in the past 30 days are lost, but if the surgery takes places more than 30 days after the memory is formed then the mouse still retains that information that helps him identify a mate or navigate a maze. That’s because those memories were moved from the hippocampus to the neocortex which is a long-term repository.

Previously, researchers at  Cold Spring Harbor Laboratory in New York studied the connections formed between neurons in the neocortex. These connections were located near the surface of the brain and thus easily monitored without significant disruption. However, they didn’t observe the connections per se, but instead looked at a proxy: the bulbous region of a dendritic spine where synapses are formed. By watching the spines come and go, the researchers could know when and where new connections where being made. For instance, using this insight they found out that about half of the spines in the neocortex were permanent and the rest turned over approximately every five to 15 days. In other words, half the connections in the neocortex are established long-term memories, while the rest are malleable allowing new memories to be formed or old ones discarded (forgetfulness).

Using the same line of reasoning, Schnitzer suggested that the spines in the mouse hippocampus should turn over ever 30 days or so, along with the memories they hold. Unlike the neocortex, however, the hippocampus is nestled deep inside the brain and hence much more challenging to image. Moreover, the spines are so densely packed that multiple spines can easily be confused for one.

The Stanford team first implanted a microendoscope deep inside the brain of mice that provides high-resolution images of structures deep within the brain. It’s basically a high-tech needle. With the equipment in place, a technique first described by Schnitzer and colleagues in 2011 to  stably image a single neuron in a living mouse over long time periods was used. But like mentioned earlier, even with their best efforts the researchers still found it extremely difficult to distinguish between single neurons and spikes.  “The ability to resolve spines in the hippocampus is right on the hairy edge of our technological capability,” Schnitzer said.

The team overcame that problem with a mathematical model that took into account the limitations of the optical resolution and how that would affect the image datasets depicting the appearances and disappearances of spines.

RelatedPosts

Psychedelic-like drug could fix the symptoms of stress without giving you hallucinations
The first 3D interactive brain is here to teach you all about how yours works
Depressed? It might be because your neurons got their branches tangled up
Birth control pills affect memory, study finds

Eventually, Schnitzer and colleagues found the region of the hippocampus that stores episodic memories contains spines that all turn over every three to six weeks, as reported in Nature. It’s no coincidence that this is roughly the duration of an episodic memory in mice.

“Just because the community has had a longstanding idea, that doesn’t make it right,” Schnitzer said. Now that the idea has been validated, he said, his technique could open up new areas of memory research: “It opens the door to the next set of studies, such as memory storage in stress or disease models.”

To recap, the Stanford researchers used novel techniques to probe how memories are formed, lost or transferred at an individual neural connection level. I don’t know about you, but that’s darn impressive!

Tags: brainmemorysynapse

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Mind & Brain

First Mammalian Brain-Wide Map May Reveal How Intuition and Decision-Making Works

byTudor Tarita
1 day ago
Mind & Brain

Our Thumbs Could Explain Why Human Brains Became so Powerful

byTibi Puiu
2 weeks ago
Mind and Brain

Do You Think in Words or Pictures? Your Inner Voice Is Actually Stranger Than You Thought

byJoshika Komarla
3 weeks ago
News

Scientists Gave People a Fatty Milkshake. It Turned Out To Be a “Brain Bomb”

byChris Marley
1 month ago

Recent news

Forget the wild-haired savages. Here’s what Vikings really looked like

September 11, 2025

Is a Plant-Based Diet Really Healthy for Your Dog? This Study Has Surprising Findings

September 11, 2025

A Single LSD Treatment Could Keep Anxiety At Bay for Months

September 10, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.