ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Mind & Brain

Scientists got an image of a person’s face just by scanning a monkey’s brain

They've cracked the code!

Elena MotivansbyElena Motivans
June 8, 2017
in Animals, Mind & Brain, Neurology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Scientists showed monkeys a picture of a human face, scanned their brains, and then were able to construct the face just from the scan! And it was eerily accurate. Basically, the code for facial recognition in monkeys has been cracked.

Monkey see, monkey do

Two researchers from Caltech, Prof. Doris Tsao, and post-doc Steven Le Chang, found that only 205 neurons in the brain were responsible for recognizing the faces. Now that they have the code, they can reconstruct any human face from a monkey’s brain activity.

Although getting a visual of a face from scanning a monkey’s brain sounds pretty sci-fi, the way that it was done is actually quite logical. When a human (or monkey) views a face, different neurons fire to transmit the information to the brain so that it can process it. To do so, the visual information is translated into neuron activity. Think of it as a foreign language, each neuron firing is analogous to a word. When you can understand what the words mean then you can understand the language. The researchers unlocked this language and found out which information different neuron activity gives to form a face. After they cracked this language, then they could reconstruct any face from monkey brain activity. The language is reversible, and the researchers could predict which neurons would fire by showing the monkey a particular image.

The left column shows the actual face shown to the monkeys, the right column shows the image reconstructed from monkey brain activity, the predicted face). Image credits: Doris Tsao
The left column shows the actual face shown to the monkeys, the right column shows the image reconstructed from monkey brain activity, the predicted face). Image credits: Doris Tsao

“We’ve discovered that this code is extremely simple,” says senior author Doris Tsao, a professor of biology and biological engineering at the California Institute of Technology. “A practical consequence of our findings is that we can now reconstruct a face that a monkey is seeing by monitoring the electrical activity of only 205 neurons in the monkey’s brain. One can imagine applications in forensics where one could reconstruct the face of a criminal by analyzing a witness’s brain activity.”

The visual information in a face can be distilled into numeric values and coordinates, for example, the position and shape of your nose in relation to your cheeks and the shape of the face. The researchers chose 25 spatial positions on human faces, they also chose 25 non-spatial traits, like skin tone and texture and eye colour. They created images of human faces that had different combinations of this spatial and non-spatial information and showed them to macaque monkeys. The monkeys had electrodes were inserted into their brains to record activity from individual face cells. Face cells are neurons in particular regions of the brain that fire most strongly when a face is seen. Through the neuron activity, the researchers were able to see which neuron responded to which piece of visual information.

Macaque monkeys were used for the experiments. Image credits: Einar Fredriksen.

After knowing how the neurons responded to different visual cues, the researchers created an algorithm (the translator) that decodes any face from the firing of neurons. By showing the monkey a new face, they could re-create the face from the firing of neurons in the monkey’s brain. The faces shown to the monkeys and those recreated with the algorithm from the neuron activity were virtually identical. Only 205 neurons were enough to re-construct the faces.

The researchers can translate from neuron activity in a brain to a human face; from brain activity to visual information. In addition to cracking the code of a brain in a living animal, this study also discovered how brains recognize faces. Before, it was believed that each face cell codes one specific face. However, now we know that each cell represents one piece of visual information that combines with all of the others to form a face. Perhaps human brains also have their own code that works in a similar way. In addition to crime applications, the research could help machine learning for recognizing faces, such as photo recognition on Facebook.

Journal reference: Le Chang, Doris Y. Tsao. The Code for Facial Identity in the Primate Brain. Cell, 2017; 169 (6): 1013 DOI: 10.1016/j.cell.2017.05.011

RelatedPosts

The Pentagon is investing heavily to protect its ‘space real estate’
A fifth of all plants threatened by extinction
What would Earth look like without water?
Scientists find promising new antibiotic — in the soil

 

 

ShareTweetShare
Elena Motivans

Elena Motivans

I've always liked the way that words can sound together. Combined with my love for nature (and biology background), I'm interested in diving deep into different topics- in the natural world even the most mundane is fascinating!

Related Posts

Environment

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

byMihai Andrei
2 days ago
Health

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

byMihai Andrei
2 days ago
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus
News

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

byTibi Puiu
2 days ago
News

Drone fishing is already a thing. It’s also already a problem

byMihai Andrei
2 days ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.