ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Research → Technology

Micro-beads based system could allow for instant laboratory analysis

Tibi PuiubyTibi Puiu
September 25, 2012
in Health, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

magnetic beads Harnessing the oscillation of magnetic microscopic beads, MIT scientists have carried out experiments which show that it’s possible to develop a tiny device capable of diagnosing biological samples instantly. Such a tiny lab would allow for fast, compact and versatile medical-testing.

Tiny magnetic balls, in the micrometer scale or a millionth of a meter, embedded with biomolecules such as antibodies, allow for proteins or even cells to bind to them. An oscillating magnetic field makes the individual beads resonate. Since the measured frequency is proportional to the mass of the bead+bio-sample, its size can also be determined. This would provide a way to detect exactly how much of a target biomolecule is present in a sample, and in the process also provide an instant information readout, compared to days typically required in a conventional laboratory. This could, for example, lead to tests for disease agents that would need just a tiny droplet of blood and could deliver results instantly, instead of requiring laboratory analysis.

Other chip-based biomedical tests are currently used today, but using this technique, coupled magnetic tracks on a microchip surface, the MIT researchers are confident that results can be provided a lot faster, and at a much smaller required biological sample size. However, the team has yet to prove their system with bio-samples, instead their system was proven to detect magnetic beads of different sizes, corresponding to those between particles that are bound to biological molecules and those that are not. The next obvious step after this proof of concept is repeating the procedure using biological samples, as well.

“It is very interesting how the researchers combine technologies that are well understood for applications in computing and data storage, and apply them to something completely different,” said R. Sooryakumar, a professor of physics at Ohio State University who was not involved in this research. He adds, “These magnetic devices are potentially valuable tools that could go well beyond how one may normally expect them to be used. The ramifications, for example in food safety and health care, such as pathogen or cancer detection, are indeed exciting.”

Findings were reported in the journal Lab on a Chip.

[source]

 

RelatedPosts

Expanding Brain Samples to Better See Them
MIT machine makes videos out of still images to predict what happens next
This laser link has achieved the fastest data transfer from space to date. It’s 1,000 times faster than before
Nanomaterials to prevent speeding bullets
Tags: biotechnologymicrochipmit

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Science

A Team of Researchers Brought the World’s First Chatbot Back to Life After 60 Years

byMihai Andrei
3 months ago
Home science

This is absolutely the best way to crack an egg, according to science

byTudor Tarita
3 months ago
Biology

Tiny “Water Bear” Protein Could Help Shield Cancer Patients From Radiation

byAlexandra Gerea
6 months ago
Discoveries

The World’s Thinnest Pasta Is Here — But It’s Not for Eating

byMihai Andrei
9 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.