Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Health → Genetics

Schizophrenia is not a single disease but multiple genetically distinct disorders

Mihai Andrei by Mihai Andrei
September 19, 2014
in Genetics, Mind & Brain, News

Cloth embroidered by a schizophrenia sufferer. Image via Wiki Commons

A new study concluded that schizophrenia isn’t a single disease, but rather a group of eight genetically distinct disorders, each with its own set of symptoms, and likely, its own treatment. The study could be the first step in finally understanding the condition and how it can be dealt with.

Currently, schizophrenia is thought of as a complex mental disorder, often associated with abnormal social behavior and failure to recognize what is real. Common symptoms include false beliefs, unclear or confused thinking, auditory hallucinations, reduced social engagement and emotional expression, and inactivity. The main difficulty in treating it is the huge variety in symptoms. If we’d be dealing with eight distinct diseases as opposed to just one, that would make a lot more sense.

Igor Zwir, PhD, one of the senior investigators, helped match precise DNA variations in people with and without schizophrenia to symptoms in individual patients. Image: Robert Boston.

This recent study, conducted at the University of Washington concludes just that: distinct gene clusters that contribute to eight different classes of schizophrenia. They analyzed the genes of over 4,000 people with schizophrenia:

“Genes don’t operate by themselves,” said C. Robert Cloninger, MD, PhD, one of the study’s senior investigators. “They function in concert much like an orchestra, and to understand how they’re working, you have to know not just who the members of the orchestra are but how they interact.”

Cloninger, the Wallace Renard Professor of Psychiatry and Genetics, and his colleagues matched precise DNA variations in people with and without schizophrenia to symptoms; in total, they analyzed over 700,000 genetic places where changes had occurred. The results were pretty clear.

For example, patients with symptoms such as hallucinations or delusions had a different type of genetic modification than those with impaired speech and behavior. The first group genetic variations interacted to create a 95 percent certainty of schizophrenia, while in the second group, there was a 100 percent change of genetic interaction leading to schizophrenia.

“What we’ve done here, after a decade of frustration in the field of psychiatric genetics, is identify the way genes interact with each other, how the ‘orchestra’ is either harmonious and leads to health, or disorganized in ways that lead to distinct classes of schizophrenia,” Cloninger said.

Most individual genes can’t be associated with schizophrenia at all, but when you start to think at a larger scale and analyzed gene clusters, you end up with a certainty between 70 and 100 percent.

“In the past, scientists had been looking for associations between individual genes and schizophrenia,” explained Dragan Svrakic, PhD, MD, a co-investigator and a professor of psychiatry at Washington University. “When one study would identify an association, no one else could replicate it. What was missing was the idea that these genes don’t act independently. They work in concert to disrupt the brain’s structure and function, and that results in the illness.”

By identifying different groups of genetic variation and classifying them in a genetic database, we can enter a new age of schizophrenia treatment, directly treating the pathogens which cause schizophrenia in the first place.

Journal Reference: Arnedo J, Svrakic DM, del Val C, Romero-Zaliz R, Hernandez-Cuervo H, Fanous AH, Pato MT, Pato CN, de Erausquin GA, Cloninger CR, Zwir I. Uncovering the hidden risk architecture of the schizophrenias: Confirmation in three independent genome-wide association studies. The American Journal of Psychiatry. vol. 172 (2), 2014. Published online Sept. 15, 2014. www.ajp.psychiatryonline.org

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Schizophrenia patients can calm down their brain by playing a computer game
  2. Targeted cognitive training improves symptoms in patients with severe schizophrenia
  3. Blind people don’t suffer from schizophrenia — and the reason could help us find a treatment
  4. Your hairs hide secrets — some subsets of schizophrenia can be detected by biomarkers in our hair
  5. Schizophrenia patients show fewer brain connections than healthy people
Tags: gene clustergenetic pathwaygeneticsschizophreniauniversity of washington

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW