Quantcast
ZME Science
  • CoronavirusNEW
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
No Result
View All Result
Home Health & Medicine Anatomy

Japanese woman is first recipient of next-generation stem cells

Mihai Andrei by Mihai Andrei
September 16, 2014
in Anatomy, Genetics, News
Researchers were able to grow sheets of retinal tissue from induced pluripotent stem cells, and have now implanted them for the first time in a patient.
Researchers were able to grow sheets of retinal tissue from induced pluripotent stem cells, and have now implanted them for the first time in a patient. RIKEN/Foundation for Biomedical Research and Innovation

A Japanese woman in her 70s is the world’s first recipient of cells derived from induced pluripotent stem cells, a technology that promises to work wonders and has the scientific community excited about the perspectives. Surgeons working on the case created the retinal tissue after reverting the patient’s own cells to ‘pluripotent’ state.

If you’d like to benefit from stem cells, but you’re worried that you haven’t had cells harvested early enough – then stop worrying, the next level technology is already here, offering the same advantages as embryo-derived cells but without some of the controversial aspects and safety concerns.

The two hour procedure took place a mere four days after the health-ministry committee gave Takahashi clearance to begin human trials; previously, it had been safely conducted on rats and mice. The surgery’s objective was transplanting a 1.3 by 3.0 millimeter sheet of retinal pigment epithelium cells into an eye of an elderly Japanese woman suffering from age-related macular degeneration.

ADVERTISEMENT

Yasuo Kurimoto of the Kobe City Medical Center General Hospital led the procedure, accompanied by a team of three other specialists.

“[She] took on all the risk that go with the treatment as well as the surgery”, Kurimoto said in a statement released by RIKEN. “I have deep respect for bravery she showed in resolving to go through with it.”

Kurimoto also took a moment to acknowledge the work of Yoshiki Sasai, a researcher who recently committed suicide. Yoshiki Sasai, deputy director of the RIKEN Center for Developmental Biology (CDB) in Kobe was one of the most brilliant minds working in stem cell research, but a scandal swirling around two stem-cell papers published in Nature in January had wreaked havoc on his career.

Get more science news like this...

Join the ZME newsletter for amazing science news, features, and exclusive scoops. More than 40,000 subscribers can't be wrong.

   

“This project could not have existed without the late Yoshiki Sasai’s research, which led the way to differentiating retinal tissue from stem cells.”

Sadly enough, Sasai’s downfall wasn’t even his own doing – one of his proteges, Haruko Obokata, then a visiting researcher, manipulated the results of two research papers on which Sasai also worked. In Japan, the media rained criticism on Sasai, including unsubstantiated accusations; despite the fact that he himself did not contribute to the forgery, he didn’t check the facts close enough. This immense pressure eventually led him to commit suicide.

ADVERTISEMENT
Yoshiki Sasai. Nature.

But the results of his work are still alive today, and show much promise for future research. Even in a patient over 70 years old, the procedure will ensure that future degeneration doesn’t take place anymore, although it is less likely to restore vision to what it was before degeneration.

“We’ve taken a momentous first step toward regenerative medicine using iPS cells,” Takahashi said in a statement. “With this as a starting point, I definitely want to bring [iPS cell-based regenerative medicine] to as many people as possible.”

Tags: pluripotent stem cellsretinastem cell
Mihai Andrei

Mihai Andrei

Andrei's background is in geophysics, and he's been fascinated by it ever since he was a child. Feeling that there is a gap between scientists and the general audience, he started ZME Science -- and the results are what you see today.

Follow ZME on social media

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
  • Coronavirus
  • News
  • Environment
  • Health
  • Future
  • Space
  • Feature
  • More

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Coronavirus
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.