ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

New enzyme could be used as an insulin alternative, to treat diabetes and obesity

University of Montreal Hospital Research Centre (CRCHUM) scientists have identified a new enzyme that could protect the body from toxic levels of intra-cell sugar. When there is too much sugar in the body it gets processed to glycerol-3-phosphate, a buildup of which can damage internal organs. The team behind the study proved that G3PP is able to extract excess sugar from cells.

Alexandru MicubyAlexandru Micu
January 13, 2016
in Biology, Chemistry, Discoveries, Health, News, Nutrition
A A
Share on FacebookShare on TwitterSubmit to Reddit

University of Montreal Hospital Research Centre (CRCHUM) scientists have identified a new enzyme that could protect the body from toxic levels of intra-cell sugar. When there is too much sugar in the body it gets processed into glycerol-3-phosphate, a buildup of which can damage internal organs. The team behind the study proved that G3PP is able to extract excess sugar from cells.

Their discovery should lead to the development of therapeutics for obesity and type 2 diabetes.

Image via pixlr

“When glucose is abnormally elevated in the body, glucose-derived glycerol-3 phosphate reaches excessive levels in cells, and exaggerated glycerol 3 phosphate metabolism can damage various tissues,” said Marc Prentki, principal investigator at the CRCHUM and professor at the University of Montreal.

“We found that G3PP is able to breakdown a great proportion of this excess glycerol phosphate to glycerol and divert it outside the cell, thus protecting the insulin producing beta cells of pancreas and various organs from toxic effects of high glucose levels.”

Mammalian cells derive the bulk of their energy from oxidizing glucose and fatty acids. These substances govern many physiological processes, from insulin and glucose production, all the way to fat accumulation and nutrient metabolization. But a too large intake of glucose disrupts these processes and can lead to obesity, type 2 diabetes and cardiovascular diseases.

Beta cells in the pancreas respond to changes in blood sugar levels, cracking up or toning down on insulin — a hormone that controls glucose and fat utilization. Usually this keeps blood sugar levels stable and cells happy and well supplied with fuel. As glucose is being used in cells, glycerol-3-phosphate is formed, a molecule central to metabolism since it is needed for both energy production and fat formation.

But when these nutrients are found in excess, they can actually damage beta cells, inhibiting their function. Blood sugar levels remain unchecked, skyrocket, and damage the beta cells even further. This leads to a vicious circle, shutting down the body’s system of managing its fuel. G3PP however isn’t produced by beta cells, and the team hopes it can be used to regulate formation and storage of fat as well as production of glucose in the liver.

“By diverting glucose as glycerol, G3PP prevents excessive formation and storage of fat” says Dr Murthy Madiraju, a scientist at CRCHUM.

Dr Prentki added: ‘It is extremely rare since the 1960s that a novel enzyme is discovered at the heart of metabolism of nutrients in all mammalian tissues, and likely this enzyme will be incorporated in biochemistry textbooks.’

The research team is currently in the process of discovering ‘small molecule activators of G3PP’ to treat cardio-metabolic disorders. These drugs will form a new class of drugs, being unique in the way they operate inside the body.

The treatment will first have to be confirmed in several animal trials before drugs for human use can be developed.

RelatedPosts

Scientists learn startling fact about sugar
Leading experts warn that COVID-19 might trigger diabetes in previously healthy patients
Newly-devised molecule might help people quit smoking by blocking nicotine break-down
Chimps get grossed out too, pointing to the origins of disgust in humans

“This is an interesting paper and to some extent unusual as new enzymes involved in metabolic control are rare,” said Professor Iain Broom, Director of the Centre for Obesity Research & Epidemiology, Robert Gordon University.

But we should take great care as we develop this class of drugs, he adds”

“Care should be taken, however, in reading too much into the possibilities for treatment of disease by focusing on such individual enzymes, especially as the evidence for this control mechanism comes from isolated cells.”

“This paper does have an important finding, however, and should not be dismissed lightly – but I would draw the line at statements of ‘guilt-free sugary treats’,” he said, referring to the media’s take on the story. ”

This is not an accurate by-line for this interesting piece of science.”

The paper can be found online in the journal Proceedings of the National Academy of Sciences.

 

Tags: Beta CelldiabetesenzymefoodG3PPglucoseinsulinliverpancreassugar

Share1TweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Health

A Man With Type 1 Diabetes Produces His Own Insulin After Receiving Millions of Gene Edited Pancreatic Cells

byTudor Tarita
3 days ago
News

Scientists Gave People a Fatty Milkshake. It Turned Out To Be a “Brain Bomb”

byChris Marley
1 week ago
Health

Low testosterone isn’t killing your libido. Sugar is

byTudor Tarita
4 weeks ago
News

A Common DNA Sugar Just Matched Minoxidil in Hair Regrowth Tests on Mice

byTibi Puiu
1 month ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.