Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Environment → Animals

Bacteria is also hereditary, from mother to child, just like DNA

We know that things like eye or skin colour are encoded in our DNA and passed down by our parents, but many other traits are significantly influenced by another hereditary mechanism: bacterial offspring. A paper in Nature suggests microbes are passed down from mother mice to pups, passing down traits similarly to how genes influence illness and health.

Tibi Puiu by Tibi Puiu
February 17, 2015
in Animals, Health, News

We know that things like eye or skin colour are encoded in our DNA and passed down by our parents, but many other traits are significantly influenced by another hereditary mechanism: bacterial offspring. A paper in Nature suggests microbes are passed down from mother mice to pups, passing down traits similarly to how genes influence illness and health.

Bacteria offspring

Bacterial infection
Image: Autism Speaks

Bacteria is often portrait as harmful, causing infections and disease. However, most of the bacteria present in our bodies, mostly the gut, are harmless or actually beneficial. Commensal bacteria can influence traits such as weight and behaviour (ZME Science reported a while ago how bacteria can ‘make’ you want to eat certain foods), but until now the general consensus was that the bacteria is acquired, not inherited.

“We have kept bacteria on one side of a line separating the factors that shape our development – the environmental side of that line, not the genetic side,” said co-senior author Herbert W. Virgin IV “But our results show bacteria stepping over the line. This suggests we may need to substantially expand our thinking about their contributions, and perhaps the contributions of other microorganisms, to genetics and heredity.”

This may serve to explain some of the problems labs have faced all over the world. Scientists working with lab mice for instance might find their pets express new and sudden traits, which can’t be explained by genetic variance alone. Obviously, the traits often spread from one mouse habitat to the next, but since these can spread to offspring it goes to explain a lot. Virgin and Thaddeus Stappenbeck of the Washington University School of Medicine also came across similar trouble while studying inflammatory bowel diseases, such as Crohn’s disease and ulcerative colitis. They found that more than half their mice had low levels of an antibody called IgA which is linked with bowel disease.

[SEE] How bacteria colonize the human gut

IgA helps defend the body against harmful invaders. It is commonly present in mucus made by the body in areas where the exterior world encounters the body’s interior, such as the eyes, nose, throat and gut.

Virgin and Stappenbeck placed mice which had low levels of IgA in the same pens with those with higher levels of IgA. Within a few weeks, all of the mice ended up having low levels of the antibody. When they bred the mice, the offspring whose mothers had low levels of the antibody also had low levels.

Eventually, they identified the likely culprit – a bacterium called  Sutterella. The authors describe how the low IgA-mice can be explained through two mechanism: common bacterial transmission and offspring transmission. Mice that were housed together acquired low antibody levels through normal spread of the bacteria, and mouse mothers passed the same bacteria to their descendants.

This latter point is of important consequence, since it suggests bacterial traits can be passed to offspring in the same manner genetic ones do.

“The implications for mouse experiments are profound and could help us cut through some persistent sources of confusion,” Stappenbeck said. “When we study mice, we have to account for the possibility that inherited bacteria and their genes could be influencing the trait we’re trying to learn about.”

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Oxytocin seals bond between mother and child
  2. Heartbreaking archaeology: 4,000 year old skeletons of mother and child found embraced in ‘China’s Pompeii’
  3. Mother who birth more children age slower, not faster
  4. Mother bears now use humans as shields to protect their cub
  5. Lioness mother spotted breastfeeding baby leopard — an absolute first
Tags: bacteriamice

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW