ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Features → Space & Astronomy → Cosmology

A hundred years ago, a physicist tried to convince the world the universe is expanding — through math alone

He thought Einstein was wrong in one regard -- and he was right.

Paula FerreirabyPaula Ferreira
August 31, 2022 - Updated on May 1, 2023
in Cosmology
A A
Share on FacebookShare on TwitterSubmit to Reddit

The development of the standard cosmological model (sometimes called ΛCDM or the Lambda-CDM) is the simplest model that provides a reasonable explanation of what we see in the universe. The was based on a set of equations proposed by a Russian physicist named Alexander Friedmann. On June 29th, the Friedmann equations turned 100.

Russian mathematician and physicist Aleksandr Aleksandrowitsch Fridman . Wikimedia Commons.

Olbers paradox

Imagine you’re trying to answer a preschooler’s question about the universe: “how many stars exist in the universe?”. You’re not sure what to answer. We don’t really know if the universe is infinite or not, so the answer is somewhere between “a bajillion” and “an infinite number”. But preschoolers are relentless, so the little one asks once more: “If there are so many stars, then why is the sky dark at night?”

That question may sound silly, but it’s actually so profound there’s actually a name for it. It’s called Olbers’ paradox, named after the German astronomer Heinrich Wilhelm Olbers. If you assume there are infinite light sources in the universe, or even just a lot of stars, then how come what we see is mostly dark?

Olbers’ paradox is the argument that the darkness of the night sky conflicts with the supposition of an infinite and eternal static universe. Wikimedia Commons.

Olbers proposed that there’s a medium that prevents the light emitted by stars from reaching farther than a specific distance. We know that is not true now. 

Other attempts to solve the paradox include the finite life of a star, which means that stars are appearing and disappearing at a constant rate, but that alone wouldn’t be enough to account for the number of stars distributed in a static universe. Astronomers have also argued that stars aren’t distributed uniformly across the universe, so you can have some portions of the sky riddled with stars, while other are devoid of almost any stars.

Still, that doesn’t really address the problem and it’s still not a satisfactory solution. The solution comes from the universe itself, which seems to be expanding at such a speed that faraway stars’ brightness is suppressed.

Friedmann equations

Friedmann followed general relativity equations to try to write general equations which could describe the dynamics of the universe. Back then, there were two known physical models that attempted to describe the universe. One universe was described by Einstein and the other by Dutch astronomer Willem de Sitter.

RelatedPosts

The Heaviest Living Organism in the World
Graphene aerogel takes lightest material crown – could be used to clean up oil spills
Bacteria-laden materials point the way to living, growing, healing buildings
How primary school students used metadata to track down a ‘whistleblower’ in two hours

Einstein’s solution consisted of a cylindrical static universe — to overcome the mathematical challenges raised by this model, Einstein used a trick: he added a number, lambda, that basically made the universe static. Meanwhile, de Sitter’s universe was spherical, but also static. Friedmann tried to get those two solutions from a general description. 

But as Friedmann worked through his general equations, he realized that there’s no real need for a static universe, as was originally thought. His model worked just fine with a universe that expanded or contracted.

If the universe were to contract, that wouldn’t help explain Olbers’ Paradox — things would be moving closer to us, so we’d see them even brighter. But if it were expanding, then we could be onto something.

Cosmology and evidence

In 1929, Edwin Hubble, an astronomer at Caltech found evidence that the universe was indeed expanding. But Friedmann was working in 1922, and at first, his publication wasn’t accepted by the scientific community.

Friedmann actually studied physics applied to meteorology. His knowledge was used during World War I as an air force ballistics instructor. During the 1920s, he focused on turbulence and aerodynamics research and at the same time he was working on general relativity.

When people didn’t like the idea of a non-static universe. Friedmann had to write to Einstein himself to convince him the equations did make sense but slowly, his idea started to catch on. 

An image sketching the 14-billion-year long history of our Universe. Copyright: ESA – C. Carreau

The result of Friedmann’s equations is what we now call the standard model of cosmology, or the ΛCDM model. Each letter in the acronym represents the things that we believe account for most of the universe’s composition. Λ is for the lambda Einstein added to make the universe static — but, ironically, the number represents a factor that accounts for the universal expansion, which astronomers now think could be linked to dark energy. CDM stands for cold dark matter, another mysterious ingredient we still don’t really understand.

The cosmic microwave background (CMB) signal contains the best observations of the universe so far. Modern satellite results agree with the ΛCDM model, as do other observations such as supernovae light curves.

However, there is tension between the CMB and supernovae results, called the Hubble tension. Different probes seem to show different results of the Hubble constant (expansion rate). This problem is presently being tackled by considering better observations or possibly making a change in the standard model, but nothing conclusive yet. Simply put, while the Friedmann equations still stand in general principle, the nuts and bolts of how the universe is expanding and what exactly is triggering this change is still unclear.

Friedmann’s results in cosmology shaped the theory that we describe how the universe started very dense and expanded to the one we see today. All the high-precision telescopes and various mission results evoke Friedmann’s equations in an attempt to understand the cosmos. 

ShareTweetShare
Paula Ferreira

Paula Ferreira

Paula is a meteorologist who is now a PhD student in Physics. You will notice that her posts are mainly about cosmology, astronomy and atmospheric science.

Related Posts

Environment

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

byTudor Tarita
8 hours ago
Anthropology

Women Rate Women’s Looks Higher Than Even Men

byTudor Tarita
8 hours ago
Art

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

byTibi Puiu
1 day ago
News

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

byTibi Puiu
1 day ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.