Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Features → Natural Sciences → Geology and Paleontology → Planet Earth

What would Earth look like without water?

From marble blue to very, very brown.

Alexandru Micu by Alexandru Micu
May 15, 2023
in Planet Earth
Edited and reviewed by Mihai Andrei

What would the Earth look like without all its vast oceans, great lakes, and meandering rivers? Surprisingly mountainous, simulations reveal.

Image credits James O’Donoghue via Youtube.

The following animated simulation was produced by planetary scientist James O’Donoghue, formerly at NASA and currently working for the Japanese space agency (JAXA). O’Donoghue worked from a video created by NASA physicist and animator Horace Mitchell back in 2008, editing its timing and adding in a tracker to showcase how much water was drained throughout the animation.

All in all, the video is a great way to showcase Earth’s underwater mountain ranges — the longest ones in the world — and the now-submerged paths that took humanity across the continents.

Sans water

“I slowed down the start since, rather surprisingly, there’s a lot of undersea landscape instantly revealed in the first tens of meters,” O’Donoghue told Business Insider.

The landscapes O’Donoghue mentions here are the continental shelves and undersea edges of each continent. These are swathes of land with higher average altitudes than the rest of the ocean floor which surround the continents — they represent the transitional landscape between dry land and the deep abyss.

The land bridges that early humans used to migrate from continent to continent are part of these raised areas. They’re submerged right now but tens of thousands of years ago, when ocean levels were much lower due to an ice age that created huge volumes of ice at the poles, they were raised enough to walk across. In those days, you could just walk from Europe to the UK, to Alaska from Siberia, or from Australia to the many islands surrounding the land down under.

“Each of these links enabled humans to migrate, and when the ice age ended, the water sort of sealed them in,” O’Donoghue adds.

But the oceans are hiding more than the movements of our ancestors. Earth’s longest chains of mountains appear in the video once sea levels have dropped by 2,000 to 3,000 meters. These sunken mountains are known as mid-ocean ridges, and form in the areas where tectonic plates butt heads. Earth’s deepest areas also make an appearance — once all the water is taken away, understandably.

These deep-ocean trenches form where tectonic plates move away from one another, creating deep gorges where magma pushes up from the Earth’s interior to generate fresh crust. To give you an idea of just how deep these gorges are, the Mariana Trench first pops up after 6,000 meters of water are removed in the video; however, its bottom only becomes visible after another 5,000-or-so meters.

“I like how this animation reveals that the ocean floor is just as variable and interesting in its geology as the continents,” O’Donoghue concludes.

Around two-thirds of the planet is covered by water. Since we don’t really have many opportunities to see the ocean floor, it is commonly imagined as a vast, flat, featureless expanse. But O’Donoghue’s work showcases the richness of underwater landscapes, and reminds us that the bottom of the ocean isn’t a boring place — it’s one of the most spectacular and untouched frontiers left on Earth.

This isn’t the only simulation showcasing Earth without water. For instance, this amazing interactive map of the planet allows you to navigate to any region of the world and see what it looks like without any drop of water.

Credit: USGS/Woods Hole Oceanographic Institution.

Also, the United States Geological Survey and the Woods Hole Oceanographic Institution produced their own simulation of a water-less Earth. The static image above shows what Earth looks like without any drop of water in a view that faces the Americas. The big blue drop is the size of the sphere you’d get if you extracted all the Earth’s ocean water, while the smaller drop corresponds to the volume of water contained in all the world’s lakes, swamps, aquifers, and rivers.

Was this helpful?
Thanks for your feedback!
Related posts:
  1. The price of oil without water
  2. Scientists supercool water without freezing it
  3. Scientists engineer crop that uses 25% less water without compromising yield
  4. New material harvests water from thin air without using energy — even in dry, arid Arizona
  5. How long can we survive without food or water?
Tags: earthLandscapeoceanwater

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW