ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Renewable Energy

Scientists achieve over 1,000 degrees Celsius with solar power alone rather than fossil fuels. A game changer for heavy industries?

Solar power could replace fossil fuels in high-heat industries like steel and cement manufacturing.

Tibi PuiubyTibi Puiu
May 15, 2024
in News, Renewable Energy
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit
steel making
Credit: Pixabay.

When you hear about solar energy, you immediately think of blue panels and clean electricity. However, electricity is just one type of energy. The sun’s energy also provides heat, which helps to keep average temperatures conducive to life. Now, Swiss scientists have harnessed solar power to generate temperatures exceeding 1,000 degrees Celsius (1,830 degrees Fahrenheit), a huge milestone in our quest to replace fossil fuels in energy-intensive industries.

Temperatures over 1,400 degrees Celsius (2,500 degrees Fahrenheit) are required to melt iron ore in steel smithing and heat kilns in cement manufacturing. Typically, these high temperatures are produced by burning copious amounts of fossil fuels. But concentrated solar power could partially cover this energy demand. With future refinements, perhaps solar could meet these needs fully.

Solar Power: A New Hope for High-Temperature Industries

The researchers from ETH Zurich have developed a method to trap solar energy using synthetic quartz, achieving temperatures as high as 1,050 °C (1,922 °F). This proof-of-concept study demonstrates the potential of solar power to provide the extreme heat required by carbon-intensive industries.

“To tackle climate change, we need to decarbonize energy in general,” says corresponding author Emiliano Casati of ETH Zurich, Switzerland.

Thermal-trapping device reaching 1050 degrees Celsius.
Thermal-trapping device reaching 1050 degrees Celsius. Credit: Device/Casati et al.

Industries like glass, steel, cement, and ceramics are fundamental to modern civilization but demand high temperatures and significant energy consumption, currently met by burning fossil fuels. These industries account for about 25% of global energy use.

Traditional solar receivers, which concentrate solar energy using sun-tracking mirrors, struggle to transfer heat efficiently above 1,000 °C. To enhance the efficiency of solar receivers, Casati’s team used semi-transparent materials like quartz to trap sunlight. They created a device by attaching a synthetic quartz rod to an opaque silicon disk. When exposed to concentrated solar energy equivalent to the light from 136 suns, the absorber plate reached temperatures of 1,050°C.

“Previous research has only managed to demonstrate the thermal-trap effect up to 170 °C,” says Casati. “Our research showed that solar thermal trapping works not just at low temperatures, but well above 1,000 °C. This is crucial to show its potential for real-world industrial applications.”

RelatedPosts

China covered all its new energy demand with renewables in 2015 — and there was still plenty left to spare
Less burns for more sunshine: renewable and fossil fuel technology integration sounds like a beach-goer’s dream
Douglas fir forests are buckling under the heat, pausing their growth altogether
Newly-developed fuel can store solar energy for up to 18 years

The team also used a heat transfer model to simulate the thermal-trapping efficiency of quartz under various conditions. The results were promising: a quartz-shielded receiver achieved 70% efficiency at 1,200 °C with a concentration of 500 suns, compared to 40% for an unshielded receiver.

Casati and his colleagues are optimizing the thermal-trapping effect and exploring new applications. They have tested other materials, such as different fluids and gases, to achieve even higher temperatures. Additionally, the absorption capabilities of these semi-transparent materials are not limited to sunlight as other forms of radiation can be focused on a receiver for broader applications.

“Energy issue is a cornerstone to the survival of our society,” Casati emphasizes. “Solar energy is readily available, and the technology is already here. To really motivate industry adoption, we need to demonstrate the economic viability and advantages of this technology at scale.”

The findings appeared in the journal Device.

Tags: heatsolar

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Climate

Only Half a Degree of Warming Could Triple Earth’s Areas Too Hot for Human Survival

byTibi Puiu
4 months ago
Climate

Record heat in California: we’re seeing climate change unfold before our eyes

byMihai Andrei
11 months ago
Materials

Can this futuristic fabric make climate heating more bearable?

byMihai Andrei
12 months ago
News

Over 30% of world’s electricity now comes from renewables

byTibi Puiu
1 year ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.