ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Finally, the metal wiring in solar cells might stop reflecting light. One up solar efficiency

There's an inherent flaw in solar cells: the metal wiring that's quintessential to harnessing the electrons reflects the incoming light, acting like a mirror. Now, must people would brush off this issue and leave it like that. It's a necessary trade off. But a team at Stanford University devised an elegant chemical technique that basically hides the wiring with silicon, away from the light while preserving energy harnessing. Metal wires cover 5 to 10 percent of a solar cell's surface. Now, in the same area more light can be absorbed, hence more electricity generated which jumps the efficiency. Of course, this also means cheaper solar panels -- if only the chemical technique is covered by the recurring costs of increased efficiency.

Tibi PuiubyTibi Puiu
November 27, 2015
in News, Renewable Energy
A A
Share on FacebookShare on TwitterSubmit to Reddit

There’s an inherent flaw in solar cells: the metal wiring that’s quintessential to harnessing the electrons reflects the incoming light, acting like a mirror. Now, must people would brush off this issue and leave it like that. It’s a necessary trade off. But a team at Stanford University devised an elegant chemical technique that basically hides the wiring with silicon, away from the light while preserving energy harnessing. Metal wires cover 5 to 10 percent of a solar cell’s surface. Now, in the same area more light can be absorbed, hence more electricity generated which jumps the efficiency. Of course, this also means cheaper solar panels — if only the chemical technique is covered by the recurring costs of increased efficiency.

Silicon pillars emerge from nanosize holes in a thin gold film. The pillars funnel 97 percent of incoming light to a silicon substrate, a technology that could significantly boost the performance of conventional solar cells. Credit: Vijay Narasimhan, Stanford University
Silicon pillars emerge from nanosize holes in a thin gold film. The pillars funnel 97 percent of incoming light to a silicon substrate, a technology that could significantly boost the performance of conventional solar cells. Credit: Vijay Narasimhan, Stanford University

“Using nanotechnology, we have developed a novel way to make the upper metal contact nearly invisible to incoming light,” said study lead author Vijay Narasimhan, who conducted the work as a graduate student at Stanford. “Our new technique could significantly improve the efficiency and thereby lower the cost of solar cells.”

The researchers modeled a typical solar cell with a thin film of gold 16-nanometer-thick atop a flat sheet of silicon. Tiny, itsy bitsy holes were perforated on the whole surface, but to the naked eye the gold layered object still looked like a shiny mirror. Analysis showed the hole-ridden gold film covered 65% of the silicon’s surface, reflecting 50% of the incoming light. So far so good. That was predictable.

solar_panel_and_solar_cell

A typical solar cell – wiring is both on top and back. 

Narasimhan and colleagues then immersed the object  in a solution of hydrofluoric acid and hydrogen peroxide. What happened next was the silicon started popping up through the holes, like pillars. These grew up to 330 nanometers in height, transforming the once golden surface into a dark red. That alone indicated the surface wasn’t reflective anymore. Narasimhan compares the silicon pillars to a colander in your kitchen sink

“When you turn on the faucet, not all of the water makes it through the holes in the colander, ” he said. “But if you were to put a tiny funnel on top of each hole, most of the water would flow straight through with no problem. That’s essentially what our structure does: The nanopillars act as funnels that capture light and guide it into the silicon substrate through the holes in the metal grid.”

The metal contacts still work great. Through trial and error, the Stanford researchers eventually reached an optimal design where nearly two-thirds of the surface can be covered with metal, yet the reflection loss is only 3 percent. This not only means that manufacturers can hide metal contacts – they can include more of it since it helps with efficiency! The researchers estimate a conventional 20% solar panel can up its efficiency to 22%, a huge gain. Multiply that by millions of solar panels and you’ve got a massive energy gain and cost reduction.

What about the gold? Yes, gold is expensive but Narasimhan says the technique works with  silver, platinum, nickel and other metals. “We call them covert contacts, because the metal hides in the shadows of the silicon nanopillars,” co-author Ruby Lai. said. “It doesn’t matter what type of metal you put in there. It will be nearly invisible to incoming light.”

RelatedPosts

Graphene can multiply light, demonstrating new immense energy potential
Solar cells etched with Blu-ray bit patterns absorb 21.8% more energy
Arnold Schwarzenegger backs up solar panels
New material allows ultra-thin, transparent solar cells

“With most optoelectronic devices, you typically build the semiconductor and the metal contacts separately,” said Cui, co-director of the Department of Energy’s Bay Area Photovoltaic Consortium (BAPVC). “Our results suggest a new paradigm where these components are designed and fabricated together to create a high-performance interface.”

A model gold sheet is, of course, different from an actual solar cell. Looking forward to seeing this work applied to an actual working cell.

Reference: Vijay K. Narasimhan et al. Hybrid Metal–Semiconductor Nanostructure for Ultrahigh Optical Absorption and Low Electrical Resistance at Optoelectronic Interfaces, ACS Nano (2015). DOI: 10.1021/acsnano.5b04034

Tags: solar cellsolar panel

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Agriculture

Insects can thrive amidst solar panels — just give them some native plants

byMihai Andrei
2 years ago
Green Living

Why transparent solar cells could replace windows in the near future

byRupendra Brahambhatt
3 years ago
solar-panel-on-the-roof
Renewable Energy

What are the pros and cons of solar energy? Here’s everything you need to know

byTibi Puiu
3 years ago
News

A simple change in manufacturing could usher in longer-lasting thin solar panels

byAlexandru Micu
3 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.