ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Environmental Issues

Groundwater pumping is bleeding the US’s rivers dry

We're hoarding all the supply.

Alexandru MicubyAlexandru Micu
June 20, 2019
in Environment, Environmental Issues, Geology, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

In certain cases, rivers have lost as much as 50% of their flow.

Water fountain.
Image via Pixabay.

New research led by a hydrologist at the University of Arizona warns that massive groundwater pumping since the 1950s is bleeding rivers dry. The findings can help shape policy for the proper management of U.S. water resources, the authors say, and should be of interest especially for states such as Arizona that manage groundwater and surface water separately.

Running low

“We’re trying to figure out how that groundwater depletion has actually reshaped our hydrologic landscape,” said first author Laura Condon, a University of Arizona assistant professor of hydrology and atmospheric sciences.

“What does that mean for us, and what are the lasting impacts?”

According to Condon, this is the first study to look at the impact of past groundwater pumping across the entire U.S. Other research has dealt with this issue, but only on smaller scales.

The team started by using computer models to see what the state of U.S. surface waters would have been today in the absence of human consumption. They then compared that with surface water changes recorded since large-scale groundwater pumping first began in the 1950s.

The model maps ground and surface waters onto a grid of squares (0.6 miles per side) that covers most of the U.S., excluding coastal regions. It included all the groundwater down to 328 feet (100 meters) below the land surface. The analysis focused primarily on the Colorado and Mississippi River basins and looked exclusively at the effects of past groundwater pumping because those losses have already occurred.

Estimates from the U.S. Geological Survey (USGS) place the loss of groundwater volume between 1900 and 2008 at 1,000 cubic kilometers. “The rate of groundwater depletion has increased markedly since about 1950,” it adds, peaking between 2000 and 2008 “when the depletion rate averaged almost 25 km3 per year (compared to 9.2 km3 per year averaged over the 1900–2008 timeframe).” One thousand cubic kilometers of water corresponds to one billion liters or 264.170.000 gallons.

“We showed that because we’ve taken all of this water out of the subsurface, that has had really big impacts on how our land surface hydrology behaves,” she said. “We can show in our simulation that by taking out this groundwater, we have dried up lots of small streams across the U.S. because those streams would have been fed by groundwater discharge.”

Too much of a good thing

Groundwater is a very valuable resource across the world. When surface water sources are scarce, absent, or overtaxed, groundwater is pumped to supply our domestic and economic needs. When misused, it can lead to enormous crises, like the one facing India today.

RelatedPosts

US and Chinese researchers develop cheap solar still to produce drinking water
Researchers create fuel from water, CO2, and artificial photosynthesis
If water rates get hiked at current rate, U.S. households unable to afford water could triple in five years
New Global River Map Is the First to Include River Bifurcations and Canals

Among other things, it is also used for agriculture and provides hydration for wild vegetation. Some native vegetation like cottonwood trees will eventually die if the water table drops below their roots. In the United States, it is the source of drinking water for about half the total population and nearly all of the rural population, and it provides over 50 billion gallons per day for agricultural needs, according to the same article from USGS.

The team found that streams, lakes, and rivers in western Nebraska, western Kansas, eastern Colorado and other parts of the High Plains have been particularly hard hit by groundwater pumping. Those findings agree with other smaller-scale studies in the region.

“With this study, we not only have been able to reconstruct the impact of historical pumping on stream depletion, but we can also use it in a predictive sense, to help sustainably manage groundwater pumping moving forward,” says Reed Maxwell, the paper’s co-author.

“We can do things with these model simulations that we can’t do in real life. We can ask, ‘What if we never pumped at all? What’s the difference?'”

The regions that were most sensitive to a lowering water table are east of the Rocky Mountains, where the water table was initially shallow (at the depth of 6-33 feet or 2-10 meters). Ground and surface waters are more closely linked in these areas, so depleting the groundwater is more disruptive for streams, rivers, and by extension, vegetation. The western U.S. has deeper groundwater, so reducing their volume didn’t have as powerful an effect on surface waters.

Condon says that other research has shown that the areas of the Midwest where precipitation used to equal evaporative demand — i.e. where irrigation wasn’t required for crops — are becoming more arid. Those are some of the regions where groundwater pumping has reduced surface waters.

“In the West, we worry about water availability a lot and have many systems in place for handling and managing water shortage,” Condon said. “As you move to the East, where things are more humid, we don’t have as many systems in place.”

The paper “Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion” has been published in the journal Science Advances.

Tags: aquifergroundwaterriverstreamSurface wateruswater

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Environment

New Global River Map Is the First to Include River Bifurcations and Canals

byRebecca Owen
4 weeks ago
Environment

Mexico Will Give U.S. More Water to Avert More Tariffs

byKimberly M. S. Cartier
1 month ago
Climate

Over 70% of the world’s aquifers could be tainted by 2100

byMihai Andrei
6 months ago
Geology

Exoplanets may have more water than we thought — but there’s a catch

byMihai Andrei
10 months ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.