ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Chemistry

New insight on water’s strange properties

Mihai AndreibyMihai Andrei
August 12, 2009
in Chemistry, Studies
A A
Share on FacebookShare on TwitterSubmit to Reddit

glass sphere on water The paradox of water is that everybody knows it, but no one really understands it. It’s the most fascinating substance we have come across so far, and it still has many secrets for us. For example, the molecular structure of water still eludes scientists, and as a result, water still has many properties which we poorly understand.

However, work conducted by researchers from the Department of Energy’s SLAC National Accelerator Laboratory and several universities in Sweden and Japan is starting to pay off, as they’re shedding new light on water’s molecular idiosyncrasies, especially on the bulk properties. All in all, there are 66 known anomalies of water, including a strangely varying density, large heat capacity and high surface tension.

For example, other liquids become denser as they get colder, but water reaches maximum density at 4 degrees Celsius; both above and below, water is less dense. Water also has an amazing capacity of storing heat, and a huge surface tension as well.

“Understanding these anomalies is very important because water is the ultimate basis for our existence: no water, no life,” said SLAC scientist Anders Nilsson, who is leading the experimental efforts. “Our work helps explain these anomalies on the molecular level at temperatures which are relevant to life.”

How water molecules arrange themselves in solid form has been established long ago, now the debate is around how molecules arrange in liquid molecules. The current accepted theory is that since ice molecules form a tight “tetrahedral” lattice, water should be made similar, only less structured due to the heat that breaks some bonds. As ice melts, the tetrahedrals loosen up, but they still ‘try’ to stay together, so the end result is ‘a smooth distribution around distorted, partially broken tetrahedral structures’

Recently, the above mentioned researchers tried to use powerful X-Ray technology to sort the mystery, and they found that the textbook accepted version is not correct. Their experiments suggested that two unexpected and very distinct structures exist, no matter the temperature: either very disordered or very tetrahedral.

The two types are spatially separated with the tetrahedral structures appearing in ‘clumps’ of up to 100 molecules surrounded by disordered areas. However, as the temperature of the water increases, fewer and fewer of these clumps exist, but they never disappear totally. Also, as the temperature rises, the disordered parts become even more disordered.

“One can visualize this as a crowded dance restaurant, with some people sitting at large tables, taking up quite a bit of room—like the tetrahedral component in water—and other people on the dance floor, standing close together and moving slower or faster depending on the mood or ‘temperature’ of the restaurant—like the molecules in the disordered regions can be excited by heat, the dancers can be excited and move faster with the music,” Nilsson said. “There’s an exchange when people sitting decide to get up to dance and other dancers sit down to rest. When the dance floor really gets busy, tables can also be moved out of the way to allow for more dancers, and when things cool back off, more tables can be brought in.”

“Previously, hardly anyone thought that such fluctuations leading to distinct local structures existed at ambient temperatures,” Nilsson said. “But that’s precisely what we found.”

He then concluded:

RelatedPosts

Dumping coal-fired in favor of gas-fired plants would save the U.S. a lot of water — switching to renewables, a whole lot more
Drinking too much water can be fatal: just do it when you’re thirsty
The Arctic’s convection engine is grinding to a halt, flooded by meltwater
When in trouble, just surf — that’s what honeybees do

“If we don’t understand this basic life material, how can we study the more complex life materials—like proteins—that are immersed in water?” asked Postdoctoral Researcher Congcong Huang, who conducted the X-ray scattering experiments. “We must understand the simple before we can understand the complex.”

Tags: oxygenparadoxwater

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Mars waterbeds
News

Scientists Discover 9,000 Miles of Ancient Riverbeds on Mars. The Red Planet May Have Been Wet for Millions of Years

byJordan Strickler
1 month ago
News

Scientists Ranked the Most Hydrating Drinks and Water Didn’t Win

byTibi Puiu
1 month ago
photic
News

A Massive Part of the Ocean Is Getting Darker and It’s Already Impacting Sea Life

byJordan Strickler
3 months ago
Environment

New Global River Map Is the First to Include River Bifurcations and Canals

byRebecca Owen
3 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.