ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment

Your phone’s case and your car’s tires may soon be made from renewable, plant sugars

Sweet.

Alexandru MicubyAlexandru Micu
April 25, 2017 - Updated on June 16, 2017
in Chemistry, Environment, Materials, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

It’s official: single-use plastics have been banned in the EU
Lego will start making its first sustainable pieces, replacing plastic
Plastic crystals identified as a solid, safe alternative to our refrigerants
Startup turns non-recyclable plastic into building blocks

Researchers from a trio of U.S. universities have developed a technique to produce butadiene — a molecule traditionally sourced from oil or natural gas that underpins synthetic rubber and plastics — from renewable sources.

Green Rubber.
Rubber is going green.
Image credits Hans Braxmeier.

Butadiene is the prime building block used for a whole bunch of materials we use today. It can be strewn together/polymerized to create styrene-butadiene rubber, the stuff quality tires are made of (apart, of course, from those made from eggshells and tomatoes). As nitrile butadiene rubber, it’s used to make hoses, seals, and the ubiquitous medical rubber glove. Butadiene is also the main component in acrylonitrile-butadiene-styrene, a rigid plastic that can be molded into hardy shapes — your computer or console case is likely made from this substance.

But getting your hands on butadiene does pose one economic and ecological problem — you need to refine natural hydrocarbons such as oil and gas to produce it. So understandably, there has been a push develop renewable (and if at all possible, cheaper) methods of obtaining this monomer. One new paper describes exactly one such method: the team — from the University of Delaware, the University of Minnesota and the University of Massachusetts — has invented a process to make butadiene from renewable sugars found in trees, grasses, and corn.

Our team’s success came from our philosophy that connects research in novel catalytic materials with a new approach to the chemistry,” says University of Delaware-based Catalysis Center for Energy Innovation Director Dionisios Vlachos, the Allan and Myra Ferguson Professor of Chemical and Biomolecular Engineering at UD and a co-author of the study. “This is a great example where the research team was greater than the sum of its parts.”

Our team combined a catalyst we recently discovered with new and exciting chemistry to find the first high-yield, low-cost method of manufacturing butadiene,” he adds. “This research could transform the multi-billion-dollar plastics and rubber industries.”

The three-step process begins with biomass-derived sugars. Using technology developed at the CCEI, the team can convert this sugars into a ring-like compound named farfural. This substance is then further processed into another ring compound called tetrahydrofuran (THF). The innovative third step uses phosphorus all-silica zeolite, a catalyst also developed at the CCEI, to break the THF rings into butadiene with more than 95 percent efficiency — considered a high-yield process in chemical manufacturing.

The reaction’s “before and after.”
Image credits P. J. Dauenhauer et al., (2017), ACS.

The authors coined this novel, selective reaction “dehydra-decyclization” to show its capability for simultaneously removing water and cracking THF at once.

The paper “Biomass-Derived Butadiene by Dehydra-Decyclization of Tetrahydrofuran” has been published in the journal ACS Sustainable Chemistry & Engineering.

Tags: ButadieneDehydra-decyclizationMonomerplasticpolymerrubber

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Environment

This New Bioplastic Is Clear Flexible and Stronger Than Oil-Based Plastic. And It’s Made by Microbes

byTudor Tarita
1 month ago
Environmental Issues

Glass bottles shed up to 50 times more microplastics into drinks than plastic or cans — and the paint on the cap may be to blame

byTudor Tarita
2 months ago
Animals

This Bear Lived Two Years With a Barrel Lid Stuck on Its Neck Before Finally Being Freed

byTibi Puiu
2 months ago
Environment

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

byTudor Tarita
2 months ago

Recent news

The disturbing reason why Japan’s Olympic athletes wear outfits designed to block infrared

August 19, 2025
Erin Kunz holds a microelectrode array in the Clark Center, Stanford University, on Thursday, August 8, 2025, in Stanford, Calif. The array is implanted in the brain to collect data. (Photo by Jim Gensheimer)

Brain Implant Translates Silent Inner Speech into Words, But Critics Raise Fears of Mind Reading Without Consent

August 19, 2025

‘Skin in a Syringe’ Might be the Future of Scar Free Healing For Burn Victims

August 18, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.