Superconductivity breakthrough could reset Europe’s power lines and make renewable energy more competitive

Don’t resist progress.

Frustrated magnets really do exhibit Hall’s effect, but only near absolute zero temperature

Settling a long debate, Princeton University researchers found that a class of materials called frustrated magnets – called so because they’re not magnetic, though they should be – can exhibit the Hall effect. This happens only at very, very low temperatures close to absolute zero, when physics transcends familiar, classical behavior into the quantum domain. First observed in 1879 by E.H. Hall, the effect describes how current deflects to one side of the ribbon when an electrically charged conductor is subjected to a magnetic field. It has since been exploited for use in in sensors for devices such as computer printers and automobile anti-lock braking systems. The current study is particularly important since it may reveal more about how transmission of frictionless electricity works (superconductivity), while also offering hints and clues that may help researchers devise the oh-so heralded quantum computers of the future.

The key to high-temperature superconductivity might lie in manipulating electron spin

Superconductivity or zero electrical resistance at room temperature is any physicist’s dream, but so far the challenges have proven too great. Typically, metals like mercury become superconductive at temperatures close to absolute zero or -273 degrees Celsius. This means that we need to add a lot of energy to refrigerate the material so we might then exploit superconductivity, making the

Superconductivity achieved at room temperature for a fraction of a second

Using a pulse of infrared light, physicists at the Max Planck Institute for the Structure and Dynamics of Matter have turned an insulating material into a superconductor even at room temperature, a property that was retained  for only a few millionths of a microsecond. Superconductivity is a state where a material can conduct electricity with absolute zero resistance, with no

Accidental exposure of crystal to light increases electrical conductivity 400 fold

A team of researchers at Washington State University achieved a dramatic 400 fold increase in electrical conductivity for a crystal after it was accidentally left exposed to light one day. This readings are attributed to photoconductivity, a phenomenon which causes a material to become more electrically conductive due to the absorption of electromagnetic radiation such as visible light, ultraviolet light, infrared

Hints of superconductivity at room temperature might hold far-reaching consequences

By doping graphite, researchers in Germany have reported that they found tantalizing hints of superconductivity at room-temperatures and far above, like water boiling point (100°C.). Superconductivity is a property which describes zero resistance electrical conductivity, however this property has only been observed at temperatures lower than -100°C. Graphite has been found to exhibit superconductivity in the past, when doped with

Crucial magnetic superconductor breakthrough opens new grounds in electronics

Researchers have reached what can only be described as a crucial milestone that opens the way for a new class of materials with amazing electronic properties. Superconductivity is a relatively recently discovered feat, in which conducting materials oppose exactly zero resistance when electric current passes through them, below a certain temperature. Like ferromagnetism and atomic spectral lines, superconductivity is a