ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Supernova study might change how speed of light in vacuum is measured

Tibi PuiubyTibi Puiu
June 25, 2014
in News, Remote sensing, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Einstein’s theories suggest that light can not travel faster than c, a constant equal to the speed of light in a vacuum, which is 299,792,458 metres per second (by definition) or about 186,282.4 miles per second. All of our standing physical models are based on this assumption, and so far this idea has yet to be proven wrong, despite the neutrino incident from CERN which was later found to be false (at some time neutrinos were found to travel slightly faster than photos, but this was later proven to be due an error in measuring). A study of a 25-year old supernova may lead to a revision of “c”, if its findings are found to be correct. As you might imagine, the implications are huge since the speed of light in vacuum is used as a constant in all astronomical calculations and observations.

Slower light

SN 1987A
image of SN 1987A.

SN 1987A was first observed in February, 1987 when it baffled some scientists with an intriguing anomaly. After a star collapses, traditionally a super nova should immediately emit a burst of neutrinos, followed by a time delayed burst of photons. In the case of SN 1987, this time delay it greater than it should have been as the optical light arrived roughly 7.7 hours after the neutrinos, or 4.7 hours late instead of the expected 3 hours delay.

Why this differences? Three scenarios have been proposed: the optical photons traveled slower than c, they were emitted later than expected, or they originated from a totally separate and irrelevant event. Typically the last scenario has been used to explain this phenomenon, but James Franson and colleagues at the University of Maryland claim they have found evidence that suggests that light doesn’t actually travel at c in a vacuum – a startling hypothesis which if found true will pose great implications for physics and astrophysics in particular.

When traveling through a medium like water or air, light gets slowed down because it meets all sorts of matter particles. In the case of the vacuum of space, Franson says a natural property of photons themselves, called “vacuum polarization,” causes a slow down. This causes the photon to split into an electron-positron pair that later recombines back to form a photon. Even if this split lasts for a moment, though, theory says that this phenomenon causes a gravitational potential between the two particle states.

The effect and final energy impact of this gravitational potential is so tiny that it only slightly affects the value of c, which is why it has been so difficult to notice it. The 1987 supernova presented an opportunity to accurately time photons as they travel 168,000 light-years to reach us, and the study suggests that the gravitational potential could easily lead to the observed delay of 4.7 hours.

RelatedPosts

Butterfly wings inspire ultra-sensitive infrared thermal imaging
Light from huge explosion 12 billion years ago reaches Earth
Scientists have calculated the force of a photon hitting an object
Who says incandescent bulbs have to waste energy: MIT design is more efficient than LEDs

The findings are no less controversial and to accurately confirm such a hypothesis you’d need some serious gear. Super-quick neutrino detectors would help shed light on this, tracking neutrinos back to their source. It’s not only about the gear either – you’d need to study at least a couple of dozen super novae to gather data of the required statistical significance to prove or disprove the paper. As almost always the case, scientists will have to wait many, many years until anything of the sorts can be done.

The paper appeared in the New Journal of Physics.

Tags: lightspeed of lightsupernova

ShareTweetShare
Tibi Puiu

Tibi Puiu

Related Posts

News

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

byOrsola De Marco
3 weeks ago
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus
News

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

byTibi Puiu
1 month ago
News

This Unbelievable Take on the Double Slit Experiment Just Proved Einstein Wrong Again

byTibi Puiu
1 month ago
Mind & Brain

Your Brain Gives Off a Faint Light and It Might Say Something About It Works

byTibi Puiu
2 months ago

Recent news

How Bees Use the Sun for Navigation Even on Cloudy Days

September 12, 2025

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

September 12, 2025

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

September 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.