ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Stars have two types of twinkling — and you can hear one of them

They're not exactly jamming, but stars can actually be heard if you listen carefully.

Jordan StricklerbyJordan Strickler
July 27, 2023
in News, Science, Space
A A
Edited and reviewed by Mihai Andrei
Share on FacebookShare on TwitterSubmit to Reddit

Stars twinkling in the night sky can be a breathtaking site. From our vantage point on Earth, stars twinkle because the atmosphere bends light as it travels. But there’s another, innate twinkle caused by rippling waves of gas.

Now a new study led by Northwestern University researchers found that these innate sparkles can also produce haunting sounds.

stars twinkling sky
Scientists converted stars’ gas waves into sound waves, enabling listeners to hear both what the insides of stars and the “twinkling” should sound like. Image credits: Pixabay.

Stars’ innate twinkling

First, the study took a unique approach to understanding the twinkling phenomenon. Researchers developed 3D simulations of massive stars, tracing the path of energy rippling from their cores to their surfaces. These ripples are generated by a turbulent process called convection, akin to fueling thunderstorms. As the waves of energy reach the surface of the stars, they cause subtle variations in brightness. This is what produces the twinkling effect.

“Motions in the cores of stars launch waves like those on the ocean,” said Evan Anders, lead author and a postdoctoral fellow in Northwestern’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA).

“When the waves arrive at the star’s surface, they make it twinkle in a way that astronomers may be able to observe. For the first time, we have developed computer models which allow us to determine how much a star should twinkle as a result of these waves.”

But this was just the first part. Then, Anders and company took this a step further and transformed the gas ripples into sound waves that you can hear.

How to hear the sound of a star

The idea of stars producing sounds might seem surprising, as space is typically considered a silent vacuum. However, all stars produce infrasound acoustic waves due to turbulence in their interiors. These sounds are too low-frequency for a human ear to hear and they differ from the sound waves we encounter on Earth. However, the underlying physics of wave generation remains the same.

RelatedPosts

Breast milk given intranasally could benefit preemies with severe brain injuries
Why climate change will make insurance unaffordable for most people
NASA says a gargantuan supermassive black hole is somehow missing
Generic drugs for heart conditions work just as well as brand name drugs

The biggest stars (like the biggest musical instruments) produce the lowest, deepest sounds — like a tuba. Small stars have high-pitched voices, like celestial flutes. Stars don’t just produce one sound, either — they often produce thousands of different sound waves that bounce around the star.

star model wave convection
A 3D simulation of how turbulent convection in the core of a large star (center) can generate waves that ripple outward and power resonant vibrations near the star’s surface. Image credits: E.H. Anders et al./Nature Astronomy 2023.

To bring the cosmic concert closer to human perception, the researchers had to adjust the natural frequencies of the waves. The original frequencies were outside the range of human hearing, so they uniformly increased the waves to make them audible.

In the new study, large star sounds resembled a “warped ray gun”, evoking images of a cosmic battleground. Medium-sized stars produced a persistent hum while small stars emitted a plaintive sound. The researchers then passed well-known songs through the stars to provide a more relatable context. This allowed us to hear how these celestial bodies transformed the familiar tunes.

They passed a short audio clip from “Jupiter” (a movement from “The Planets” orchestral suite by composer Gustav Holst) and from “Twinkle, Twinkle, Little Star” through the three sizes.

“We were curious how a song would sound if heard as propagated through a star,” Anders said. “The stars change the music and, correspondingly, change how the waves would look if we saw them as twinkling on the star’s surface.”

The study is more than just a fun art project. It has significant implications for astronomers’ understanding of stars and their inner workings. Scientists can now gain valuable insights into a star’s core convection dynamics by analyzing the twinkling patterns and the corresponding sound waves. By listening to the melodies of the stars, we can gain deeper insights into the celestial bodies that light up our night skies. This opens up a whole new way of experiencing and understanding the cosmos.

The study was published in the journal Nature Astronomy.

ShareTweetShare
Jordan Strickler

Jordan Strickler

A space nerd and self-described grammar freak (all his Twitter posts are complete sentences), he loves learning about the unknown and figures that if he isn’t smart enough to send satellites to space, he can at least write about it. Twitter: @JordanS1981

Related Posts

Health

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

byMihai Andrei
12 hours ago
Geology

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

byTibi Puiu
14 hours ago
Future

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

byTibi Puiu
15 hours ago
Animals

This Self-Assembling Living Worm Tower Might Be the Most Bizarre Escape Machine

byMihai Andrei
15 hours ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.