ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

This is why space armor is becoming more important

Things are getting pretty dicey in outer space.

Dragos MitricabyDragos Mitrica
May 8, 2017
in Space, Space flight, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

NASA creates computers that can survive on Venus, 30 years after the last landings
Boeing wants to beat SpaceX to Mars. Elon Musk: “Do it”
Stunning close-up views of scorching hot Mercury may surprisingly reveal ice in its craters
China plans to put a flag on the moon in 2026 — one that flutters using electromagnetic forces

The European Space Agency recently shared this image of a tiny, 10-cm object that can wreak havoc in even the strongest space armor we have.

ESA space debris studies, an impact sample. This is the kind of damage even a small projectile can cause. Image credits: ESA.

There is a growing concern regarding the sheer number of random objects in outer space, be they natural or man-made. Needless to say, all these objects pose a great risk to spacecraft, because they typically travel at extremely high velocities. For instance, an object just 10 cm across would inflict catastrophic damage and potentially cause the disintegration of the target. This happens due to the extremely high velocities at which they travel, which can reach 15 km/s for space debris and 72 km/s for meteoroids. Just so you can make an idea, bullets almost never go above 400 meters per second, so debris travels about 37 times faster than a bullet.

Even extremely small objects can have a major impact. Recently, the ISS’ Cupola — the dreamy vantage point which astronauts use to take amazing pictures — was chipped by a paint flake or small metal fragment no bigger than a few thousandths of a millimetre across. The problem is not only the impact itself but also that the speed of these rogue objects causes additional shockwaves which further the damage. The ESA explains:

“Beyond 4 km/s (depending on the materials), an impact will lead to a complete break­up and melting of the projectile, and an ejection of crater material to a depth of typically 2–5 times the diameter of the projectile. In hypervelocity impacts, the projectile velocity exceeds the speed of sound within the target material. The resulting shockwave that propagates across the material is reflected by the surfaces of the target, and reverses its direction of travel. The superimposition of progressing and reflected waves can lead to local stress levels that exceed the material’s strength, thus causing cracks and/or the separation of spalls at significant velocities.”

This was caused by “possibly a paint flake or small metal fragment no bigger than a few thousandths of a millimetre across,” writes the ESA.

It’s counterintuitive, but big objects aren’t really as problematic as small objects. Larger objects can be tracked and studied and perhaps avoid — or at the very least, we can prepare for it. But smaller objects are virtually untraceable and can be quite surprising, striking out of nowhere. According to NASA, there are millions of pieces of debris or ‘space junk’ orbiting Earth. Recently the ESA shared its latest figures according to which there are around 5,000 objects larger than 1 meter in orbit, 20,000 larger than 10cm, and 750,000 larger than 1cm. All these pose a risk for all spacecraft, which is why researchers are trying to develop better and safer armor. Notably, the ESA is working on Whipple shields with aluminium and Nextel–Kevlar bumper layers.

Whipple shields are quite clever in their approach. They consist of a relatively thin outer bumper spaced some distance from the main spacecraft wall. This will cause a bumper which is not expected to stop the particle or even remove most of its energy, but rather to break it and disperse its energy, dividing the original particle into many fragments, spread across a greater surface. Intermediate fabric layers further slow the cloud particles. The original particle energy is spread more thinly over a larger wall area, which is more likely to withstand it. Nowadays, Whipple shields have reached a stage of maturity, so they’ll likely be incorporated into the next generation of spacecraft — potentially even SpaceX shuttles.

A 7.5 mm-diameter aluminium bullet was shot at 7 km/s towards the same ‘stuffed Whipple shield’ design used to protect the ATV and the other International Space Station manned modules. Image credits: ESA.

Future research will try to further our understanding of such impacts, because the risks get higher every day. If we want to start exploring Mars or other areas of the solar system, or even if we just want to secure Earth’s orbit for future spacecraft, armor is key. With every piece of spacecraft and satellite we launch. the risks get higher.

Tags: armorSpacespace explorationspace flight

ShareTweetShare
Dragos Mitrica

Dragos Mitrica

Dragos has been working in geology for six years, and loving every minute of it. Now, his more recent focus is on paleoclimate and climatic evolution, though in his spare time, he also dedicates a lot of time to chaos theory and complex systems.

Related Posts

News

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

byTibi Puiu
4 days ago
OLYMPUS DIGITAL CAMERA
Archaeology

Ancient 3,500-year-old Mycenaean armor tested in epic combat simulation shows Homer’s Iliad wasn’t just a fantasy story after all

byTibi Puiu
3 weeks ago
Biology

China’s Tiangong space station has some bacteria that are unknown to science

byMihai Andrei
4 weeks ago
Climate

Trump’s Budget Plan Is Eviscerating NASA and NOAA Science

byMihai Andrei
2 months ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.