ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Quasar measurements suggest the universe is expanding faster than we thought

We might need some new physics to explain how this is possible.

Mihai AndreibyMihai Andrei
January 30, 2019
in Astronomy, Astrophysics, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Dark energy density seems to be increasing over time, and we’re not really sure why.

The universe is a weird place and it just got a bit weirder. Image credits: NASA / Hubble.

To infinity and beyond

Discovering that the universe is expanding was one of the biggest turning points in astronomy, and science in general. We don’t know how big the universe is, we don’t even know if it’s infinite or not, but we’re pretty certain that it’s expanding. The first evidence emerged in the 1920s, when Alexander Friedmann derived a set of equations known as the Friedmann equations, showing that the universe might expand. The theory really picked up steam a few years later, when Edwin Hubble found that some galaxies appear to be moving away from us.

Hubble also found that not only is the universe is expanding but its expansion is accelerating. This seemed stunning at the time. Not only is the universe getting bigger, but it’s getting bigger, faster. Hubble calculated a universal expansion rate of 500 km/s/Megaparsec, with one megaparsec being equivalent to 3.3 million light years. So for every 3.3 million light-years farther away, the matter where you are is moving away 500 km faster — every second. Subsequent measurements have greatly refined and reduced this value, but there is still some controversy and uncertainty. Most studies, however, agree that the universal expansion rate is around 70km/s/Megaparsec.

But it gets even weirder. Ironically, the universal expansion rate is also called Hubble constant — when it’s anything but constant. Not only do different measurements come up with slightly different values, but when you look in different parts of the universe, you’ll also find different expansion rates.

For instance, the nearby universe, as measured by telescopes like Hubble and Gaia, seems to sport a value of 73 km/s/Mpc. Meanwhile, when the Planck telescope looked towards the distant universe, it came back with a value of just under 70 km/s/Mpc. So Hubble’s constant seems to vary both in time and in space — so much for being a constant.

This is where the new study comes in — but instead of clearing things up, it adds even more mystery.

The brightest of the brightest

Artistic depiction of a distant quasar. Image credits: ESO/M. Kornmesser.

Hubble’s initial studies, like many subsequent measurements, were based on something called redshift. Essentially, as light travels from its original source to us, space is stretched, and the wavelength itself is stretched. This stretch shifts the wavelength towards the redder parts of the spectrum — hence the name “redshift”.

RelatedPosts

Superluminous supernovas explode twice, create some of the most powerful magnets in the universe
Ancient supernovae might have contributed to Earth mass extinction
Newly discovered ancient Black hole is monstrously big for its age
Supernova study might change how speed of light in vacuum is measured

Now, if you want to look at something very distant, you want a very powerful light source. In the new study, researchers focused on the brightest sources of light: quasars.

In a stellar twist of fate, the brightest sources of light go hand in hand with the darkest objects in the universe: supermassive black holes. These black holes, believed to lie at the center of all galaxies, are surrounded by a gaseous accretion disk. As gas falls toward the black hole, energy is released in the form of electromagnetic radiation with incredible power. This phenomenon is called a quasar, and some quasars are thousands of times brighter than the entire Milky Way, which is exactly what you want in this type of study. Quasars are spread across the universe, making them ideal target for multiple measurements.

Astronomers from Durham University in the UK and the Universita degli Studi di Firenze in Italy used observations from 1,600 quasars to calculate the expansion rate of the Universe up to about one billion years after its birth.

When you look at something that’s one light year away, you’re essentially looking into the past and seeing that object as it was one year ago. In this case, the astronomers look around 12 billion years into the past. The strange thing was that the values they found for expansion rates 12 billion years ago were similar to expansion rates reported by previous studies looking at areas from some 8 billion years ago. In other words, two different epochs had the same expansion rate, when really they shouldn’t. There’s nothing in our current arsenal of cosmological knowledge that could convincingly explain that.

“When we combine the quasar sample, which spans almost 12 billion years of cosmic history, with the more local sample of type-Ia supernovas, covering only the past eight billion years or so, we find similar results in the overlapping epochs,” said Dr. Elisabeta Lusso of Durham University, in a statement.

“However, in the earlier phases that we can only probe with quasars, we find a discrepancy between the observed evolution of the Universe and what we would predict based on the standard cosmological model.”

Of course, this is still an early study, which will be thoroughly investigated and replicated — but if it is confirmed, then astrophysicists will have a lot of digging to do to find an explanation.

However, one possible solution, still speculative at this point. could have something to do with the elusive dark energy, a theoretical form of energy postulated to act in opposition to gravity and to occupy the entire universe. Lead author Dr Guido Risaliti, of the Università degli Studi di Firenze, concludes:

“One of the possible solutions to the expansion of the early Universe would be to invoke an evolving dark energy, with a density that increases as time goes by.

The study “Cosmological constraints from the Hubble diagram of quasars at high redshifts” was published in Nature Astronomy.

Tags: Hubble expansionquasarsupernova

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It’s At Least 25 Times Stronger Than Any Supernova

byTibi Puiu
1 week ago
News

Astronomers Found a Perfect Space Bubble Dozens of Light-Years Across and No One Knows How It Got There

byTibi Puiu
4 weeks ago
This artist’s illustration shows the largest radio jet ever found in the early Universe. The jet was first identified using the international Low Frequency Array (LOFAR) Telescope, a network of radio telescopes throughout Europe. Follow-up observations in the near-infrared with the Gemini Near-Infrared Spectrograph (GNIRS), and in the optical with the Hobby Eberly Telescope, were obtained to paint a complete picture of the radio jet and the quasar producing it. GNIRS is mounted on the Gemini North telescope, one half of the International Gemini Observatory, funded in part by the U.S. National Science Foundation and operated by NSF NOIRLab. Historically, such large radio jets have remained elusive in the distant Universe. With these observations, astronomers have valuable new insights into when the first jets formed in the Universe and how they impacted the evolution of galaxies.
Science

Astronomers Discover Largest Radio Jet from the Early Universe. It’s Twice the Width of the Milky Way!

byTibi Puiu
4 months ago
News

Early cosmic explosions may have filled the young universe with water

byJordan Strickler
5 months ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.