ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Paving the way to the moon: How lasers could build roads on lunar soil

We're inching closer to Moon bases.

Jordan StricklerbyJordan Strickler
October 18, 2023
in News, Space
A A
Edited and reviewed by Tibi Puiu
Share on FacebookShare on TwitterSubmit to Reddit
lunar roads built with lasers

Human exploration of the Moon has long piqued the interest of scientists and space enthusiasts. Thanks to technological advancements, it is becoming a more realistic possibility. However, there are obstacles to overcome on the Moon, the most notable of which is the need for more essential infrastructure like roads and landing pads.

To overcome this obstacle, scientists from the European Space Agency (ESA) and other institutions, studied the possibility of using laser melting manufacturing to pave the Moon with an artificial version of lunar regolith (the rocky upper surface layer of the moon). This novel strategy, published in the journal Nature Scientific Reports, addresses the issue of Moon infrastructure and is critical for the long-term success of lunar operations.

EAC-1A, a lunar regolith simulant, stood in for the real thing in these studies. To solve the problem of lunar dust, researchers used a powerful carbon dioxide laser to melt the simulant into interlocking structures that could be used to make roads and landing pads.

“The research used a basaltic lunar regolith simulant developed by a team of the European Space Agency,” said Juan Carlos Ginés Palomares, Aalen University mechanical engineering and one of the study’s authors. “The raw materials come from a quarry in the Siebengebirge Volcanic Field (Germany) and are later crushed and sieved to the corresponding particle sizes.”

The authors experimented with laser beams of various powers and diameters (up to 12 kW and 100 millimeters, respectively) to develop a strong material. However, they discovered that crisscrossing or overlapping the laser beam path caused cracking. They devised a plan to create triangular, hollow-centered geometric shapes roughly 250 millimeters in size using a 45-millimeter diameter laser beam. The authors suggest that these could be interlocked to create a solid surface for landing pads and roads across large areas of lunar soil.

The laser melted regolith into interlocking structures that could be used to pave roads on the moon. Credit: Jens Günster, BAM.

There are several benefits to using a laser to melt metal instead of more conventional methods. For instance, it reduces expenses and simplifies logistics by eliminating the need to ship heavy materials from Earth. The research highlights the significance of in-space manufacturing and in-situ resource utilization technologies to the future of space travel. By eliminating the need to bring in materials from Earth, these technologies improve the long-term viability of a mission. Paving with a regolith simulant would also protect both humans and machines from the hazards of lunar dust kicked up by rovers.

Beyond the Moon, the implications of this study are enormous. The in-situ resource utilization — the harnessing of local natural resources at mission destinations — and laser-melting manufacturing technologies have the potential to be used on other celestial bodies, lowering the financial and logistical burdens of future missions while simultaneously increasing their sustainability.

RelatedPosts

NASA eavesdropped on the Sun, and they made a video so you can hear it too
Earth’s oceans generate a second, tiny, previously-unknown magnetic field, ESA satellites find
Earth’s gravity is shaped like a ‘potato’
Orbiting probe take snapshot of Mars Landers’ grave — RIP, Schiaparelli

Still, our understanding has significant gaps, such as the energy needed to build roads.

“Processing all this material would require a lot of energy, so for its use on the lunar surface, we suggest a sunlight concentrator, such as a Fresnel lens, for this application, as it uses the light without the need to convert it first into electricity,” Ginés Palomares said.

Another untested issue is longevity, but the team is optimistic.

“We have not yet addressed the study of the life expectancy of these tiles,” Ginés Palomares said. “We have analyzed their mechanical properties with very positive results.”

Tags: Aalen UniversityEAC-1Aesalunar regolith

ShareTweetShare
Jordan Strickler

Jordan Strickler

A space nerd and self-described grammar freak (all his Twitter posts are complete sentences), he loves learning about the unknown and figures that if he isn’t smart enough to send satellites to space, he can at least write about it. Twitter: @JordanS1981

Related Posts

Agriculture

Astronauts May Soon Eat Fresh Fish Farmed on the Moon

byTudor Tarita
4 months ago
Future

Astronauts Can Now Print Metal in Space and It’s a Game Changer for Future Missions

byMihai Andrei
6 months ago
Future

John McFall Becomes the World’s First Disabled Astronaut in Historic ESA Decision

byMihai Andrei
6 months ago
Astronomy

Stunning close-up views of scorching hot Mercury may surprisingly reveal ice in its craters

byMihai Andrei
7 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.