ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Yes, there’s liquid water flowing on the surface of Mars!

During an extraordinary conference hosted by NASA, a team of researchers report that flowing briny water is flowing out of Martian mountain slopes. Let that sink in for a moment. Now, time to pull yourself together and check out some more details.

Tibi PuiubyTibi Puiu
September 28, 2015
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

NASA reports that  briny water is flowing out of Martian mountain slopes, at the surface. Let that sink in for a moment.  Now, time to pull yourself together and check out some more details.

water on mars
These dark, narrow, 100 meter-long streaks called recurring slope lineae flowing downhill on Mars are inferred to have been formed by contemporary flowing water. The image is produced by draping an orthorectified (Infrared-Red-Blue/Green(IRB)) false color image on a Digital Terrain Model (DTM) of the same site produced by High Resolution Imaging Science Experiment. Credits: NASA/JPL/University of Arizona

The discovery was made by a team of researchers led by Lujendra Ojha of the Georgia Institute of Technology which inferred the findings based on images taken by the NASA’s Mars Reconnaissance Orbiter (MRO). Surveys showed that seasonal dark streaks appear like spots on the planet’s surface, on the slopes of mountain ridges. When Ojha and his colleagues first noticed the streaks, they hypothesized that these could be marks left over by flowing water. Now, armed with spectral analysis that revealed that chemical makeup of the dark streaks, the researchers could say for certain: these are hydrated salts. In other words, water mixed with salt brine.

Dark narrow streaks called recurring slope lineae seen here flowing on a Martian mountain. Image: NASA/JPL
Dark narrow streaks called recurring slope lineae seen here flowing on a Martian mountain. Image: NASA/JPL

The salt is actually essential, since it keeps the water liquid at lower temperatures. It’s why cities often spray roads with salt: to melt it.  Pure water would freeze immediately on Mars, where average temperatures are about -55° C ( -67° F). In fact, there’s always water on the surface of Mars – it’s just that it’s frozen stiff at the poles. There’s even water in the atmosphere. We know for sure that Mars used to hold vasts amounts of water, oceans miles deep with water. But then its climate changed, and it disappeared most of it vanishing out into space. But not quite all, it seems.

“Our quest on Mars has been to ‘follow the water,’ in our search for life in the universe, and now we have convincing science that validates what we’ve long suspected,” said John Grunsfeld, astronaut and associate administrator of NASA’s Science Mission Directorate in Washington. “This is a significant development, as it appears to confirm that water — albeit briny — is flowing today on the surface of Mars.”

The dark streaks observed by Ojha and team are called recurring slope lineae (RSL). These hydrated salts, however, don’t stay liquid for long, but keep flowing only in certain times of the day and when the season allows, i.e. when surface temperature isn’t that low.

water on mars
Recurring slope linae on the Garni crater on Mars.

“We found the hydrated salts only when the seasonal features were widest, which suggests that either the dark streaks themselves or a process that forms them is the source of the hydration. In either case, the detection of hydrated salts on these slopes means that water plays a vital role in the formation of these streaks,” said Ojha.

Where does the water come from? That’s the million dollar question. We don’t know yet for sure. It could come from a number of sources: it could be melting subsurface ice; water absorbed from the atmosphere; or even from an aquifer. The latter would be truly amazing, and not that preposterous seeing how Curiosity found water under the surface of the red planet.

“It’s unambiguous evidence that liquid water is flowing on Mars​,” Ojha says. 

Given these findings, the changes of finding life on Mars have gone up a notch. Perchlorate salts, the kind found by NASA, are widespread here on Earth. For instance, the chemical makeup of the reported RSL is very similar to that found in the Atacama Desert in Chile. Here very salty, briny water can be found and inside it all sorts of microorganisms lurk. Mars’ mountains are a whole different beast, however. Besides the climate – totally inhospitable – researchers found high concentration of magnesium perchlorate, magnesium chlorate, and sodium perchlorate. These typically oxidize fast and break down organic material, the stuff life is made of.   But while the analogy might not be perfect, it does hint that it might be possible to find life inside these dark streaks.

We might even find out soon. The Curiosity rover is at the moment at Mount Sharp, which incidentally also features some RSL. The terrain is so messed up, though, that sending Curiosity to drill or sample the area is a suicide mission. We need to send new probes, the kind that are well equipped and designed to make the jump. Considering NASA wants to send a new rover to Mars on 2020, we might not have to wait long to see. But even if there isn’t any life on Mars, the prospect of another planet – which isn’t that far away (1 and half years to be more precise) – that hosts water both on its surface and below is hugely tempting for astronauts or would be human settlers. The pieces are finally coming together. What’s certain is that we’re living exciting times and the coming decades will be transformational for the human species. Wait and see. Better yet, pitch in.

RelatedPosts

NASA mission to the moon Europa gets the green light
NASA’s morphing wing will make airplanes smoother, more efficient
Quakes on Mars Could Support Microbes Deep Beneath Its Surface
NASA Plans Life-Searching Mission on Jupiter’s Satellite Europa

Findings were published in  Nature Geoscience. 

 

Tags: Georgia Institute of TechnologyMarsnasa

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

First Complete Picture of Nighttime Clouds on Mars

bySarah Stanley
6 days ago
mars
News

Quakes on Mars Could Support Microbes Deep Beneath Its Surface

byJordan Strickler
2 weeks ago
Geology

NASA finally figures out what’s up with those “Mars spiders”

byMihai Andrei
1 month ago
Mars waterbeds
News

Scientists Discover 9,000 Miles of Ancient Riverbeds on Mars. The Red Planet May Have Been Wet for Millions of Years

byJordan Strickler
1 month ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.