ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

They were once the only exo-planets we knew of. Turns out, they’re extremely rare

A new study sheds light on the planets around cosmic lighthouses.

Mihai AndreibyMihai Andrei
August 22, 2022
in Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Thirty years ago, researchers discovered the first ever exoplanets — planets outside our solar system. The planets were orbiting a pulsar, a type of neutron star, one of the most extreme objects in the known universe. While scientists have uncovered several other planets around pulsars since then, a new study suggests that this type of system is extremely rare.

Violent cosmic lighthouses

Artist impression of the pulsar-planet system PSR B1257+12 detected in 1992. The pulsar and three radiation-doused planets are all that remains of a dead star system. Image credits: NASA / JPL.

Finding stars is one thing — they emit a lot of light, they’re often very big, you can even see stars with the naked eye in the night sky. But finding planets is another. Planets don’t emit light of their own, so finding them is a whole different ball game. In fact, one of the most common methods through which researchers find exoplanets is by looking for dips in the light of stars — dips that could be caused by planets passing between their star and the Earth.

We now know of a few thousand exoplanets (and more are constantly being discovered every year, thanks to missions such as Kepler and TESS), but the first planets outside our solar system were only discovered in 1992.

The planets were discovered orbiting a pulsar called PSR B1257+12. In addition to being neutron stars (the densest type of star and the second densest type of object in the universe, second only to black holes), pulsars are intriguing because they rotate rapidly and emit strong bursts of radio waves from their magnetic poles at very regular rates — a sort of “pulse” of the star, hence the name.

Think of pulsars as a type of cosmic lighthouse, rotating and sending out a signal that can be detected, just that in the case of an actual lighthouse, the signal is light, and in the case of a pulsar, it’s a radio wave.

We now know that PSR B1257+12 hosts at least three planets similar in mass to the rocky planets in our Solar System, and astronomers have found several more pulsars that host planets. But is this type of pulsar-planets system common, or is it a bit of a fluke? The new study seems to suggest the latter.

Artistic depiction of the cosmic lighthouse. Image credits: NASA / JPL.

“[Pulsars] produce signals which sweep the Earth every time they rotate, similarly to a cosmic lighthouse,” says Nițu. “These signals can then be picked up by radio telescopes and turned into a lot of amazing science.”

RelatedPosts

Here’s what the science says about bringing more guns into schools: it doesn’t work
Brazil says Zika epidemic is officially over
Understanding squirrel personalities can help us better protect endangered species
Closest star orbiting our galaxy’s black hole discovered

The violent conditions around the formation and evolution of pulsars are unlikely for “normal” planets to withstand. In fact, several of the planets found around pulsars are extremely unusual, including planets mostly made of diamond. 

Nițu and colleagues performed the largest search of planets around pulsars to date. They specifically looked for planets that would be at least a little bit like the Earth: with masses up to 100 times that of the Earth and orbital periods between 20 days or 17 years. They found just 10 potential detections, with one particularly promising pulsar hosting at least two planets with masses just a few times bigger than that of the Earth and orbital periods of around 1.9 and 3.6 years respectively — so two planets that do resemble the Earth a little bit.

But overall, though, the survey revealed very few planets around pulsars, suggesting that this type of system is indeed very rare. Furthermore, unlike the near-circular orbits of planets in our own solar system, the planets orbiting pulsars seem to have notably elliptical orbits. Since a planet’s orbit around its star is closely linked to its formation mechanism, this suggests that these planets were also formed through different mechanisms than what we see in our solar system.

Still, there’s virtually no chance that this type of planet could actually be Earth-like. Unlike the sun, neutron stars produce no new heat and are very dense (some of the densest things, second only to black holes).

Ultimately, there’s still much we don’t know about pulsars and their environment. Better understanding pulsars and what types of stars and planets are common is crucial for our understanding of the galaxy — and the universe.

This work was presented at the 2022 National Astronomy Meeting on Monday, 11 July.

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Genetics

This Superbug Learned How to Feed on Plastic from Hospitals

byMihai Andrei
6 hours ago
Biology

China’s Tiangong space station has some bacteria that are unknown to science

byMihai Andrei
6 hours ago
News

Hidden Communication Devices Found in Chinese-Made Inverters Could Put U.S. Electrical Grid at Risk

byTudor Tarita
7 hours ago
Health

Patients on Weight Loss Drugs Like Wegovy May Say They Just Don’t Want to Drink Anymore

byTudor Tarita
7 hours ago

Recent news

This Superbug Learned How to Feed on Plastic from Hospitals

May 20, 2025

China’s Tiangong space station has some bacteria that are unknown to science

May 20, 2025

Hidden Communication Devices Found in Chinese-Made Inverters Could Put U.S. Electrical Grid at Risk

May 20, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.