ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Microorganisms can survive in space and on other planets, safe behind dried-up biofilms

Worry and excitement, all in one paper.

Alexandru MicubyAlexandru Micu
January 24, 2017
in Biology, News, Science, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

A new paper from the University of Edinburgh shows that by banding together into biofilms, microbial communities can live far longer than isolated individuals when exposed to Mars-like brines. The bugs survived even better when dried out first, such as would happen on the surface of a spaceship in transit.

What kind of film was this picture snapped with? Biofilm.
Image credits NASA / Wikimedia.

The findings offer hope for discovering alien life, as well as showing the dangers of contaminating alien planets with Earth microorganisms.

Traveling buddies

Mostly bone-dry and with little atmosphere to protect its surface from radiation or keep temperature in check, Mars is a world decidedly hostile to life. Still, it does have some very attractive qualities. The red planet is really close (by astronomical standards) to Earth and harbors ice caps — even seasonal streams of liquid water. So a lot of people have their sights set on Mars for potential colonization. Even more, in the end Mars may surprise us with its own indigenous life — which would be great.

One problem arises however. Every time we send a craft to the planet, we run the risk of infecting/seeding it with microorganisms from Earth. If these get a foothold on Mars, they could endlessly frustrate scientists trying to determine the planet of origin — or they could overtake the native inhabitants altogether. But are microbes even capable of surviving the trip through space, and then on Mars?

A new research paper by Dr Adam Stevens at the University of Edinburgh and colleagues shows that biofilms (colonies protected by a slime-like casing) can survive for long periods of time in Mars-like brines — even longer if they’ve been dried out by space-flight first.

The team submerged biofilm samples in seven brines of various chemical compositions and concentrations. In the most diluted brines, all of the biofilms survived well past the 5-hour observation time. In more concentrated brines (the last being 70 times as salty as the weakest one), desiccated biofilms survived for much longer than those whose water content wasn’t altered.

 

RelatedPosts

India’s probe nears Mars orbit – will it make history?
Curiosity embarks on the next leg of its journey
The Martian Polygons – An evidence for former Seafloors?
From Earth to Mars in 39 days?

Alien invasion with a twist

After an initial shock, these dried out biofilms actually started to grow — presumably in an effort to protect themselves from the environment, the team writes. This may be caused by cells communicating through the biofilm, with cells exposed on the outside layer sending warning signals to those further down in the colony. These insulated cells could then either produce more insulating slime, or reproduce more quickly and build the barrier through sheer numbers.

Still, 5 hours into the experiment, all the microbes in the dried biofilms were dead. The hydrated biofilm cells didn’t even make it to the one hour mark, with some samples dying out in under half an hour.

This research helps us better understand how to look for, and protect, possible alien life. Areas on Mars that have water are the most likely spots for finding alien life, so they’re designated as ‘special regions’ by the international Committee on Space Research. At the same time, these characteristics also make them the most readily-contaminated spots on the planet. Stevens’ research shows that biofilms could allow microorganisms to survive in these conditions. This means that in case of contamination, it would be impossible to study special regions with any semblance of accuracy — so we should be very careful when sending any drones or rovers to these areas.

The same paper also shows there’s hope in finding life nestled in Mars’ briny slopes, as well as on the moons further out in the solar system.

“This research gives us some information about what we could possibly look for if we do go and investigate these brines – which, on the flip side, we’re saying maybe we shouldn’t,” says Stevens.

“To me, this is a kind of a call to pick up the baton of this area that we really need to understand as we launch into an era of space travel,” says Jennifer Macalady at Penn State University in University Park.

The full paper “Biofilms Confer Resistance to Simulated Extra-terrestrial Geochemical Extremes” has been published in the journal bioRxiv.

Tags: bacteriabrineearthMarsmicroorganismsSpace

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Agriculture

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

byTudor Tarita
8 hours ago
Astronomy

A NASA Spacecraft Just Spotted a Volcano on Mars Like We Have Never Seen Before

byTudor Tarita
1 week ago
Astronomy

Astronomers Found a Volcano Hiding in Plain Sight on Mars

byTudor Tarita
2 weeks ago
Concept image of an icy moon.
News

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter’s Icy Moon Europa

byRupendra Brahambhatt
2 weeks ago

Recent news

China Resurrected an Abandoned Soviet ‘Sea Monster’ That’s Part Airplane, Part Hovercraft

June 30, 2025
great white shark

This Shark Expert Has Spent Decades Studying Attacks and Says We’ve Been Afraid for the Wrong Reasons

June 30, 2025

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

June 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.