ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Astronomers zoom in on baby solar system only 300 light-years away that’s forcing us to rethink planetary formation

In a rare opportunity, scientists are studying how planets are forming in a very young solar system. They got more than they bargained for.

Tibi PuiubyTibi Puiu
March 16, 2017
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit
The stellar debris disk around HD 106906. This image was created using an innovative software designed at UCLA. The star itself is masked with a black circle and the various hues represent brightness gradients. Yellow is the brightest and blue the dimmest. Credit: Erika Nesvold/Carnegie Institution for Science
The stellar debris disk around HD 106906. This image was created using an innovative software designed at UCLA. The star itself is masked with a black circle and the various hues represent brightness gradients. Yellow is the brightest and blue the dimmest. Credit: Erika Nesvold/Carnegie Institution for Science

In 2014, astronomers discovered a very young solar system which is still seeding planets. Studying such young nurseries is important because physicists can gain a better understanding of how planets form both outside and inside our own solar system. In this case, there’s a planet with a mass 11 times that of Jupiter which oddly enough the research think it formed outside the solar system’s debris disk.

A debris disk is, as the name implies, a huge disk that can span millions of miles made of gas, dust, and ice. When a cloud becomes massive enough, it can collapse under its own gravity to form such a disk, which in turn provides the seeding material to create planets and stars. After the star is born and the gas evaporates, gravity starts pushing away the dust and debris which rotate and collide to form a structure similar to our very own Kuiper belt at the edge of the solar system.

The current consensus is that most if not all planets outside our solar system are formed inside such a vast disk of debris and very close to its center to boast. But this nearby young planet, called HD 106906b, is 650 times as far from its star as Earth is from the sun. It’s so far away that it takes 1,500 years to make one single complete orbit around the parent star. Strikingly, it’s only 13 million years old too — an embryo basically compared to planets from our solar system which formed 4.6 billion years ago.

Smadar Naoz, a University of California, Los Angeles, assistant professor of physics and astronomy, along with colleagues, calculated the planet’s orbital period using a new software developed by the team. It’s called Superparticle-Method Algorithm for Collisions in Kuiper belts and debris disks, or SMACK for short. The algorithm was written by s Erika Nesvold, a postdoctoral fellow at the Carnegie Institution for Science, who is the lead author of the paper published in The Astrophysical Journal.

“This is such a young star; we have a snapshot of a baby star that just formed its planetary system — a rare peek at the final stage of planet formation,” said Naoz said.

But the results surprised everyone because the model suggests that HD 106906b formed outside the solar system’s disk.

“Our current planet formation theories do not account for a planet beyond its debris disk,” Naoz added.

Using SMACK which was fed observational data gathered in 2016 by American and European astronomers, the team re-created the shape of debris disk. The model does not contain planets nor do the researchers know if there are any other planets besides  HD 106906b. It’s important to note that previous researchers thought you couldn’t recreate a debris disk without taking planets into account, so this is pretty much a breakthrough in itself.

 

RelatedPosts

Mind-controlled mice are forced to ignore food, water, and sex to complete maze
Legendary 1848 ship found in the Arctic in pristine shape
Urban Algae Farm Gobbles Up Highway Air Pollution
From hazy ouzo to clear math: the science behind a milky mystery

“In our solar system, we’ve had billions of years of evolution,” said Michael Fitzgerald, UCLA associate professor of physics and astronomy, and the study’s other co-author. “We’re seeing this young system revealed to us before it has had a chance to dynamically mature.”

Naoz refrained from making any wild or exotic hypothesis that might explain the findings. “There are no assumptions; this is just physics,” she said. One thing’s for sure, everyone will keep on eye out for similar findings.

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Photo of Ceres captured by NASA's Dawn spacecraft.
Astronomy

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

byRupendra Brahambhatt
10 hours ago
Future

Are Cyborg Jellyfish the Next Step of Deep Ocean Exploration?

byMihai Andrei
11 hours ago
Economics

Can AI help us reduce hiring bias? It’s possible, but it needs healthy human values around it

byAlexandra Gerea
18 hours ago
a cat napping
Health

Does a short nap actually boost your brain? Here’s what the science says

byMihai Andrei
20 hours ago

Recent news

Photo of Ceres captured by NASA's Dawn spacecraft.

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

August 22, 2025

Are Cyborg Jellyfish the Next Step of Deep Ocean Exploration?

August 22, 2025

Can AI help us reduce hiring bias? It’s possible, but it needs healthy human values around it

August 22, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.