ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Scientists find baby exoplanets using a completely new method

The method is a lot like tracing the ripples made by a rock thrown in a pond.

Tibi PuiubyTibi Puiu
June 14, 2018
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Using a novel method to measure inconsistencies in gas flows, researchers were able to identify three newborn exoplanets that would have been otherwise impossible to locate.

Artist illustration of the three newly identified exoplanets. Credit: NRAO/AUI/NSF; S. Dagnello.
Artist illustration of the three newly identified exoplanets. Credit: NRAO/AUI/NSF; S. Dagnello.

Alien hunters have made terrific strides in the past decade: with the help of the Kepler Space Telescope, astronomers have discovered 2,342 confirmed exoplanets and revealed the possible existence of up to 2,245 others. Some of these have characteristics that make them Earth-like in terms of composition, mass, and size, and a fraction is possibly habitable given the orbit around their parent stars.

One such planet orbits Proxima Centauri, which is only 4.2-light-years away. The newfound world, known as Proxima b, is about 1.3 times more massive than Earth, suggesting that the exoplanet is a rocky world. The planet is also in the star’s habitable zone, just 4.7 million miles (7.5 million kilometers) from its host star.

To find exoplanets like Proxima b, scientists employ the so-called transit method, which involves measuring dips in a star’s brightness. On the off-chance that our telescopes are aligned in the same plane with a distant star and its planets, it’s possible to infer the presence of exoplanets from the star’s minute blips. These changes in brightness are characterized by very small dips and for fixed periods of time, usually in the vicinity of 1/10,000th of the star’s overall brightness over the time course of a few hours.

The transit method has proven extremely useful for alien hunters and has been used to find most exoplanets thus far. It has one major drawback, though: planetary transits are observable only when the planet’s orbit happens to be perfectly aligned with the astronomers’ line of sight.

These gaps in the rings of gas and dust could be used by forming planets. Credit: B. Saxton NRAO/AUI/NSF.
These gaps in the rings of gas and dust could be used by forming planets. Credit: B. Saxton NRAO/AUI/NSF.

This is why two new studies published in the Astrophysical Journal Letters (1 and 2) are such a big deal. The authors detailed a completely new method they used to detect not one, but three new exoplanets.

The two team of astronomers initially pointed the Atacama Large Millimeter/submillimeter Array (ALMA) — the world’s most powerful telescope for observing molecular gas and dust — towards HD 163296, 4-million-year-old star roughly 330 light-years from Earth.

RelatedPosts

Newly discovered Super-Earth has a permanent dark side just like the Moon
Earth’s green history may help scientists spot plant life on alien planets
Technique that allows mapping of distant worlds might allow us to find the next Earth
Turns out, another solar system has more planets than ours

As expected, the very young star is surrounded by a protoplanetary disc of gas and dust, which provides the seeding material for new planets to form. By the looks of it, HD 163296 already has at least three young planets orbiting around it.

The novel method doesn’t identify the planets directly but rather infers their existence by measuring inconsistencies in gas flows around them. Just like you can infer the presence and characteristics of a rock by the ripples it makes when thrown in a pond, so can planets be identified from the patterns of gaseous motion within the protoplanetary disc.

Specifically, the researchers looked for subtle changes in the levels of carbon monoxide (CO) in high-res images captured by ALMA.

“Measuring the flow of gas within a protoplanetary disc gives us much more certainty that planets are present around a young star,” Christophe Pinte, lead author on one of the two papers, said in a statement.

Pine and colleagues used this method to identify a planet which orbits about 39 billion kilometers (24 billion miles) away from HD 163296. Meanwhile, another team at the University of Michigan located two other planets located roughly 12 billion and 21 billion kilometers (7.4 billion and 13 billion miles) from the star. All three planets seem to be as massive as Jupiter.

Researchers hope that in the future their method will be employed on other protoplanetary discs. The technique is particularly promising for pinpointing very young planets — the kind of observations that could provide invaluable insight into how our solar system and planet Earth formed.

Tags: exoplanet

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Distant Exoplanet Triggers Stellar Flares and Triggers Its Own Destruction

byKimberly M. S. Cartier
1 week ago
Astronomy

The James Webb telescope just found a planet by actually ‘seeing’ it

byMihai Andrei
2 months ago
News

A Planet 900 Light-Years Away Has Weather So Extreme “It Feels Like Science Fiction”. It’s 70,000 km/h Winds Carry Vaporized Iron and Even Titanium

byTibi Puiu
6 months ago
This artist’s visualisation of WASP-127b, a giant gas planet located about 520 light-years from Earth, shows its newly discovered supersonic jet winds that move around the planet’s equator. With a speed of 9 km per second (33 000 km/h), this is the fastest jetstream of its kind ever measured in the Universe. By tracking the speed of molecules in the atmosphere with the CRIRES+ instrument on ESO’s Very Large Telescope, researchers found that one side of the planet’s atmosphere is moving towards us and the other away from us. This indicates that there is a powerful wind current going around the planet. 
News

A Gas Giant 500 Light-Years Away Has the Fastest Winds Ever Recorded: A Staggering 33,000 km/h

byTibi Puiu
7 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.