ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Astronomy

Astronomers discover planet that shouldn’t be there

Mihai AndreibyMihai Andrei
December 10, 2013 - Updated on January 6, 2014
in Astronomy, Astrophysics, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Earth’s green history may help scientists spot plant life on alien planets
Mars is also a wobbly planet like Earth, and we don’t know why
Meteorites altered by Shock Wave explain how our Solar System formed
Jupiter now officially has 69 moons. There are likely more to be confirmed

The discovery of a giant planet orbiting its star at 650 times the average Earth-Sun distance baffled researchers. So far, they haven’t been able to explain how such a strange system came to be.

Artistic representation. Credit: NASA/JPL-Caltech

The international team of astronomers was led by a University of Arizona graduate student. This is the most distant planet ever found orbiting around a single, sun-like star. As a sidenote, it is also the first exoplanet discovered at the University of Arizona.

The planet in case (HD 106906) has a mass 11 times bigger than that of Jupiter and is 650 times further from its star than the Earth is from the Sun. No currently known mechanism can explain how or why this is happening.

“This system is especially fascinating because no model of either planet or star formation fully explains what we see,” said Vanessa Bailey, who led the research. Bailey is a fifth-year graduate student in the UA’s Department of Astronomy.

There are two main mechanisms of planetary formation currently accepted by astronomers. Planets that form close to their stars from small asteroid-like bodies born in the primordial disk of dust and gas that surrounds a forming star. Since this process is fairly slow, giant plants can’t form this way, only stars comparable in size to Earth. The other one suggests that giant planets can form from a fast, direct collapse of disk material. But there’s a problem with this as well: primordial disks rarely contain enough mass in their outer reaches to allow a planet like HD 106906 b to form. So Bailey started thinking about most exotic solutions.

“A binary star system can be formed when two adjacent clumps of gas collapse more or less independently to form stars, and these stars are close enough to each other to exert a mutual gravitation attraction and bind them together in an orbit,” Bailey explained. “It is possible that in the case of the HD 106906 system the star and planet collapsed independently from clumps of gas, but for some reason the planet’s progenitor clump was starved for material and never grew large enough to ignite and become a star.”

But this model also doesn’t explain things, because the mass ratio of the two stars in a binary system is typically no more than 10-to-1.

“In our case, the mass ratio is more than 100-to-1,” she explained. “This extreme mass ratio is not predicted from binary star formation theories — just like planet formation theory predicts that we cannot form planets so far from the host star.”

Understanding complex, unusual systems like this one is very important – these are the kind of studies that push the border of our knowledge further and further.

“Every new directly detected planet pushes our understanding of how and where planets can form,” said co-investigator Tiffany Meshkat, a graduate student at Leiden Observatory in the Netherlands. “This planet discovery is particularly exciting because it is in orbit so far from its parent star. This leads to many intriguing questions about its formation history and composition. Discoveries like HD 106906 b provide us with a deeper understanding of the diversity of other planetary systems.”

Tags: earthjupiterplanetplanetary formation

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Environment

Humans Built So Many Dams, We’ve Shifted the Planet’s Poles

byTudor Tarita
3 weeks ago
This is HOPS-315, a baby star where astronomers have observed evidence for the earliest stages of planet formation. The image was taken with the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner. Together with data from the James Webb Space Telescope (JWST), these observations show that hot minerals are beginning to solidify. In orange we see the distribution of carbon monoxide, blowing away from the star in a butterfly-shaped wind. In blue we see a narrow jet of silicon monoxide, also beaming away from the star. These gaseous winds and jets are common around baby stars like HOPS-315. Together the ALMA and JWST observations indicate that, in addition to these features, there is also a disc of gaseous silicon monoxide around the star that is condensing into solid silicates –– the first stages of planetary formation.
News

For the First Time Ever We Can See Planets Starting to Form Around a Star

byJordan Strickler
4 weeks ago
Astronomy

Earth Is Spinning Faster Than Usual. Scientists Aren’t Sure Why

byTudor Tarita
1 month ago
Astronomy

The James Webb telescope just found a planet by actually ‘seeing’ it

byMihai Andrei
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.