ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Astronomy

Meet TESS — the new exoplanets detective

NASA's future planet hunter has arrived -- and it's set for glory.

Mihai AndreibyMihai Andrei
April 11, 2018 - Updated on June 1, 2022
in Astronomy, Astrophysics, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

How to “Weigh” Baby Planets
Five ancient alien planets discovered in 11 billion-year-old solar system
Scientists discover a volcano-rich planet hotter than some stars
China finished work on FAST, the world’s largest radio telescope

NASA’s future planet hunter has arrived — and it’s set for glory.

Like Kepler, TESS will be using the transit method illustrated here. Essentially, as a planet passes in front of its star, it creates a dip in the star’s luminosity, which can be detected. This is called a transit. Image credits: NASA Goddard Space Flight Center.

The Kepler telescope ushered in a new age of space exploration, enabling astronomers to discover thousands of exoplanets. It was a magnificent tool that was successful beyond our wildest dreams. However, it’s nearing the end of its lifetime. Crippled and almost out of fuel, Kepler is fast approaching its conclusion. But rest assured — NASA already has its replacement prepared.

NASA’s Transiting Exoplanet Survey Satellite, or TESS, will be carried in outer space by SpaceX’s Falcon 9 rocket in just a few days, on April 16, where it’s set for even greater success than Kepler. Think of it this way: if Kepler was looking through a straw, TESS will be visualizing 90% of the night sky. In other words, Kepler had a very narrow surveying angle, whereas TESS will have a much broader angle — overall, the area covered by TESS will be about 350 times larger than what Kepler could witness. This is largely owed to its unusual orbit — TESS has a never-before-used orbit which was designed to minimize the time the telescope spends obstructed by Earth or the Moon. However, there’s a trade-off.

TESS will observe the southern skies first, and then the north. The survey strips will overlap near the celestial poles, creating pockets of sky that will have longer observation times. Conveniently, the patches of sky that will be observed the most by TESS are also in ideal viewing locations for the future James Webb Space Telescope, which will be able to study planets that TESS finds in more detail. Image credits: NASA / MIT.

TESS traded resolution for this larger angle — whereas Kepler was able to find planets up to 3,000 light years away, most of the exoplanets TESS finds will be just 30 to 300 light years away. Kepler has already discovered over 2,500 planets, with another 2,500 planet candidates being currently under review. TESS is expected to find 3,000 to 4,000 planets orbiting M-dwarves — relatively small and cold stars, red dwarfs of the M spectral type. Red dwarfs are by far the most common type of star in the Milky Way, but because of their low luminosity, they are difficult to study.

Currently, TESS is at Kennedy Space Center’s Payload Hazardous Servicing Facility, getting its thrusters fueled up for flight — and we couldn’t be more excited for this mission.

Tags: planettelescopeTESS

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

This is HOPS-315, a baby star where astronomers have observed evidence for the earliest stages of planet formation. The image was taken with the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner. Together with data from the James Webb Space Telescope (JWST), these observations show that hot minerals are beginning to solidify. In orange we see the distribution of carbon monoxide, blowing away from the star in a butterfly-shaped wind. In blue we see a narrow jet of silicon monoxide, also beaming away from the star. These gaseous winds and jets are common around baby stars like HOPS-315. Together the ALMA and JWST observations indicate that, in addition to these features, there is also a disc of gaseous silicon monoxide around the star that is condensing into solid silicates –– the first stages of planetary formation.
News

For the First Time Ever We Can See Planets Starting to Form Around a Star

byJordan Strickler
4 weeks ago
Astronomy

The James Webb telescope just found a planet by actually ‘seeing’ it

byMihai Andrei
2 months ago
News

The World’s Largest Camera Is About to Change Astronomy Forever

byTibi Puiu
2 months ago
News

This Planet Is So Close to Its Star It Is Literally Falling Apart, Leaving a Comet-like Tail of Dust in Space

byJordan Strickler
4 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.