ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Alien life

Jupiter’s moon Europa may have liquid water very close to its surface

A new study likens processes on Europa to those on Earth, with far-reaching implications.

Mihai AndreibyMihai Andrei
April 19, 2022
in Alien life, Geology, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

For 20 years, researchers have been trying to figure out how double ridges on Europa formed. Now, researchers describe a similar process happening on Earth, in Greenland — which could have major implications for the structure and habitability of Europa.

The scarred surface of Europa. Image credits: NASA / JPL.

If you’re looking for life in our solar system (in a place other than the Earth) Europa likely wouldn’t be your first guess. A frigid satellite orbiting a gas giant far away from the Sun doesn’t sound particularly appealing if you’re a lifeform. However, recent research has shown that there’s more to Europa than meets the eye.

Beneath the frozen surface of the satellite, there’s an ocean of liquid water — and while we still have no evidence for life on Europa, the satellite has emerged as one of the most intriguing sites in the solar system for biologists looking for signs of life.

It’ll be a while before we get a mission to Europa to investigate things directly, and in the meantime, understanding the structure of this ice shell and how it evolved geologically is vital for our understanding of the processes taking place on Europa. In a new study, researchers from Stanford led by Riley Culberg investigated a surface landform called a double ridge, and their results suggest liquid water could lie very close to the surface.

From Greenland to Europa

Brown, linear (double) ridges extend prominently across the scene. Image credits: NASA / JPL.

Double ridges are very common on Europa. They’re nearly symmetrical ridge pairs, flanking a shallow through that can be hundreds of kilometers long. They appear in almost every area of Europa, but until now, researchers have struggled to explain how these landforms took shape. But as so often happens in science, chance brought researchers from different areas together.

“It was really a bit of serendipity,” explains Riley Culberg, a geophysicist who studies the near-surface hydrology of ice sheets and glaciers.”One of my colleagues, who is a planetary scientist, was giving a presentation on the big open questions in Europa science and showed a picture of these double ridges on the surface. It struck me that I had seen a similar-looking feature in my own data from Earth while working on a totally different project related to climate change impacts on the Greenland Ice Sheet.”

As it turns out, the double ridges on Europa bear a striking similarity to those in Greenland: they have a similar ratio between the height of the ridges and the distance between the two peaks.

RelatedPosts

Life bounced back quickly at the famed dinosaur-ending asteroid impact site
Galactic warming triggered by supermassive black holes leads to stellar infertility
It turns out water births can actually have significant benefits
Iridescence and superhydrophobicity combined on graphene
Surface imagery comparison of a double ridge on Europa (a / left) and Earth (b / right). Image credits: Culberg et al (2022) / Nature.

It turns out that double ridges on Europa have a very characteristic ratio between the height of the ridges and the distance between the two peaks, and after accounting for the difference in gravity between Earth and Europa, we found that the Greenland feature has a pretty similar ratio.

To explore this feature in Greenland, the researchers used ice-penetrating radar and surface elevation data, creating several models to help them explain their findings. The results suggest that a succession of fractures and refreezing are responsible for the process. If this is the case, then shallow liquid water is common in the moon’s ice shell, within the first 1-5 km of the shell, Culberg explains.

“Our study reports on our discovery of an icy double ridge on the Greenland Ice Sheet that has a similar geometry to the double ridges found on Jupiter’s icy moon Europa. Our analysis of ice-penetrating radar data shows that the double ridge formed through the refreezing and fracture of a subsurface water pocket within the ice sheet,” Culberg says.

“This was the first time that we were able to watch something similar happen on Earth and actually observe the subsurface processes that led to the formation of the ridges,” the researcher adds.

Good news for Europa’s habitability

Data from radargram above the double ridge. The color scale shows the calibrated received radar power with darker colors indicating a stronger return. The water table appears close to the surface. Image credits: Culberg et al (2022) / Nature.

Given how prominent these double ridges are on Europa, it’s likely that the processes that created them play a key role in the satellite’s geology. Even as the near-surface processes on Europa and Greenland may be quite different, there are enough similarities to believe that what’s causing the double ridges on Europa is also causing them in Greenland — although the scale of the processes is difficult to estimate, Culberg explains.

“Given what we know about Europa, we think that the types of fundamental physical processes (refreezing, pressurization, and fracture) that we’re suggesting are also reasonable there. But there is still a lot to be done to understand how our proposed ridge formation mechanism scales to Europa and what that might mean for the size and shape of ridges and how long it would take to form them.”

“We think that they would likely have a similar structure to what we saw in Greenland – so a relatively thin subsurface layer of water that, in cross-section, is much wider than the ridge, and extends along the full ridge length in the third dimension. Given that Europa’s ridges are much larger than the one we studied in Greenland, the sills are likely also much larger.”

These images reveal the dramatic topography of Europa’s icy crust. A computer generated 3D perspective (upper right) shows that bright material, probably pure water ice, prevails at the ridge crests and slopes while most dark material (perhaps ice mixed with silicates or hydrated salts) is confined to lower areas such as valley floors. Image credits: NASA / JPL.

If the mechanism for the ridge formation translates to Europa, it suggests that these shallow water pockets must have been (and maybe still are) very common in the ice shell. This is broadly consistent with the current understanding of Europa’s ice shell structure.

Perhaps most intriguingly, if water is indeed so close to the surface, it could mean that the presence of life is more likely in Europa’s liquid ocean. Furthermore, it would make it easier for future missions to explore this possibility.

“Primarily, the presence of liquid water in the ice shell would suggest that exchange between the ocean and ice shell is common, which could be important for chemical cycling that would help support life. Shallow water in particular also means that there might be easier targets for future space missions to image or sample that could at least preserve evidence of life, without having to fully access the deep ocean,” Culberg concludes.

The study “Double ridge formation over shallow water sills on Jupiter’s moon Europa” was published in Nature Communications.

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Environment

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

byMihai Andrei
2 hours ago
Health

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

byMihai Andrei
2 hours ago
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus
News

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

byTibi Puiu
8 hours ago
News

Drone fishing is already a thing. It’s also already a problem

byMihai Andrei
8 hours ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.