Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Research → Materials

World’s lightest material is 99% air

The rest of the 1% is made up of hallow tubes of nickel. So, this makes for a very rigid, but extremely lightweight material. Just look at the picture below of the lightest material in the world, called microlattice, balancing on a dandelion. You know the potential is huge.

Dragos Mitrica by Dragos Mitrica
October 12, 2015
in Materials, News, Science

The rest of the 1% is made up of hallow tubes of nickel. So, this makes for a very rigid, but extremely lightweight material. Just look at the picture below of the lightest material in the world, called microlattice, balancing on a dandelion. You know the potential is huge.

microlattice
Credit: HRL Laboratories

Microlattice was first developed in 2011, a joint effort by researchers from HRL, CalTech and the University of California, Irvine. Now, Boeing – the company who mainly funded the research – released an entertaining video presenting the work.

Sophia Yang, a research scientist at HRL Laboratories says they were inspired by human bones, which are very rigid on the outside, but very porous and mostly filled with air inside. This makes bones hard to break, but also lessens the strain on the muscles which have to carry all the load. Microlattice works similarly, only at a much higher tensile compression thanks to its  hollow tubes just 100 nanometers across. This allowed for 99% open volume, all filled with air, which can absorb a lot of energy. If you were to crush it even more than halfway through, it would just bounce back to its initial size and shape.

Microlattice has a density of only 0.9 milligrams per cubic centimetre. Silica aerogels – the world’s lightest solid materials – have a density as low as 1.0mg per cubic cm. But whereas the structure of aerogel is mostly chaotic, microlattice has an orderly lattice structure which makes it a lot stiffer and stronger. Structure maters a lot. Just look at how weight efficient and versatile structures like the Eiffel Tower or the Golden Gate Bridge are.

Microlattice could become useful in aerospace applications, lowering the weight of aicraft, hence boosting fuel savings. It could also be used as battery electrodes, shock or acoustic absorber, construction material and so on.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. World’s lightest material can really take a hit
  2. Graphene aerogel takes lightest material crown – could be used to clean up oil spills
  3. This 18-year-old Indian designed the world’s lightest satellite. NASA will launch it into space soon
  4. Desert beetle and cactus inspire material that collects water from the air
  5. New “meringue” material could make air travel much quieter
Tags: material

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW