ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

We need to make more sustainable fertilizers. This is how we could do it

It's a big environmental problem we don't talk about enough.

Mihai AndreibyMihai Andrei
February 24, 2023 - Updated on March 1, 2023
in Science
A A
Edited and reviewed by Tibi Puiu
Share on FacebookShare on TwitterSubmit to Reddit
Our agriculture depends on fertilizers. Image credits: James Baltz.

Fertilizers are a bigger environmental problem than you think. They help feed the world, and about half of today’s population is completely reliant on them, but synthetic fertilizers also account for an important part of our greenhouse gas emissions. While phosphorus and potassium can be mined as salts, nitrogen fertilizer is currently produced through a process that is very energy-​intensive and currently requires large quantities of natural gas or coal.

This is why this vital component of agriculture is often thought to be impossible to decarbonize. But Paolo Gabrielli from ETH Zurich thinks differently.

Gabrielli is looking at ways through which the chemical industry can achieve net-zero CO2 emissions, but he also agrees it’s a difficult task.

“The chemical industry includes several products that contain carbon (such as plastics, garments, methanol), and is therefore virtually impossible to decarbonize. This is why the chemical industry is one of the so-called hard-to-abate sectors (like aviation, cement, or steel),” Gabrielli tells ZME Science.

“The relevance of the chemical industry (responsible for ~2 Gt CO2 emissions, or ~5% of global emissions in 2020) and the difficulty in achieving net-zero emissions, was a major motivation for us to start working on it. I believe this will be a major research avenue for the next 10-15 years,” the researcher adds.

Fertilizers increase crop yields, so it’s not foreseeable that we would simply give up on them anytime soon — they’re essential for food security. But as Gabrielli reported in a new study, producing nitrogen more sustainably would not only help against climate change, but also increase countries’ food security. But how do you do it?

Together with colleague Lorenzo Rosa, Principal Investigator at Carnegie Institution for Science in Stanford, US, he set out to explore ways in which net-zero fertilizers could be produced.

The matter is all the more pressing since estimates show that by 2050, we will need to double food production to meet growing demand — and nitrogen fertilizers are crucial to doing so. Furthermore, Russia’s invasion of Ukraine showed just how frail much of our food systems really are and how easy it is to unbalance it.

RelatedPosts

Scientists get paralysed patients to move again by zapping the patients’ spine with electricity
Big oil asks US government to protect it from climate change
Scientists Close to Finding Leonardo da Vinci’s DNA Using a 21-Generation Family Tree
The one word that almost ruined climate negotiations

Gabrielli and Rosa first found several routes that can be implemented, with today’s technology, to alleviate the environmental problems associated with nitrogen production. First is the shifting of production from countries with a lot of fossil fuels to countries with a lot of renewable energy. Using more renewable energy in the process, instead of natural gas (and especially coal) would be a simple way to offset some of the emissions associated with fertilizer. However, this depends on the price of natural gas and how strict the environmental targets will be, says Gabrielli. Also, it depends on having sufficient renewable energy for other uses — so much so that you have some energy to spare for fertilizers.

The problem is that electrifying fertilizer production (using water electrolysis, which relies on electricity) requires 25 times as much energy as today’s production using natural gas. So even for countries with abundant water, wind, and solar energy, it might be difficult to spare the required energy, and could create competition with other sectors that require sustainable energy.

The second pathway focuses on storing the carbon produced through conventional, fossil fuel methods. Essentially, the nitrogen-producing chemical plants would be fitted with carbon capture and storage (CCS), infrastructure for capturing and storing the CO2. This would also require a lot of new infrastructure and wouldn’t reduce our dependence on fossil fuels, but would reduce some of the emissions.

Image credits: Etienne Girardet.

The third pathway would be synthesizing hydrogen from biomass. Biomass requires a lot of arable land and water, often competing with agriculture, but it makes sense if the feedstock is waste biomass (crop residues). The hydrogen could be used for energy to produce new fertilizers.

None of these pathways is perfect, Gabrielli emphasizes. If we are to truly make the fertilizer industry more sustainable, we need to combine all of them based on local resources and capabilities.

“The analysis suggests that the available net-zero routes (CCS, electrification, biomass) will need to be combined based on available resources: CCS when underground storage capacity and CO2 infrastructures are available; electrification when large renewable generation potential are available; biomass when land and water are available. We have not determined the optimal mix of net-zero routes based on the specific location. That would be a nice follow-up but requires selecting the objective and constraints that define the “optimal” mix: these could be cost, carbon emissions, water use, and so forth.”

The good news is that while the route to green fertilizers is complex and requires multiple measures, we can do it with today’s technology — future tech could of course help, but we don’t need to rely on it.

“Such routes can be implemented today, as technologies are available. While costs can be higher depending on the price of natural gas, we believe that technology routes based on biomass and electrification (through the production of green hydrogen), can reduce the production costs of ammonia in a world of high natural gas prices. Of course, this comes together with a reduced dependence on natural gas, which allows achieving net-zero emissions,” the researcher adds in an email.

There are other considerations. For instance, just 20% of the ammonia used today is actually consumed in food, the other 80% is lost or wasted because of our very inefficient food systems. Also, as more countries focus on renewable targets, net-zero fertilizers that don’t rely on fossil fuels become more and more essential. Ultimately, if we truly want to reach net zero, there’s probably no way to do this without net zero fertilizers.

But Gabrielli also gives us a reality check. While net zero fertilizers may be technically viable today, they will require trade-offs in terms of other resources like land and water, and even if our society truly focuses on them, this will be a mammoth challenge that will take many years to bear fruit.

“At the moment, we are not there yet to implement green nitrogen fertilizers. However, I believe that the energy and food crises, hence the necessity to phase out natural gas, significantly catalyzed the transition to clean technology solutions. Having said that, the development of new processes and the deployment and optimization of existing (already available) processes for the production of net-zero fertilizers will keep us busy for many years to come.”

The study was published in the journal Environmental Research Letters.

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Culture & Society

What’s Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

byAlexandra Gerea
1 day ago
Mind & Brain

Why a 20-Minute Nap Could Be Key to Unlocking ‘Eureka!’ Moments Like Salvador Dalí

byTibi Puiu
1 day ago
Anthropology

The world’s oldest boomerang is even older than we thought, but it’s not Australian

byMihai Andrei
1 day ago
Future

Swarms of tiny robots could go up your nose, melt the mucus and clean your sinuses

byMihai Andrei
2 days ago

Recent news

What’s Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

June 28, 2025

Why a 20-Minute Nap Could Be Key to Unlocking ‘Eureka!’ Moments Like Salvador Dalí

June 28, 2025

The world’s oldest boomerang is even older than we thought, but it’s not Australian

June 27, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.