ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

New strategy discovered to combat Huntington’s disease

A new procedure could remove mutant proteins that kill neurons

Fermin KoopbyFermin Koop
November 1, 2019
in Health, Mind & Brain, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

A strategy to selectively remove mutant proteins could combat neurodegeneration, according to new research, which showed this could be accomplished by using compounds that interact with the misfolded part of the protein and the neuron’s protein-clearance machinery.

Credit: Wikipedia Commons

Many neurodegenerative diseases involve the slow accumulation of a misfolded protein in neurons over many years, leading to the death of neurons from the build-up of toxic proteins. Scientists have long been searching for ways to reduce the levels of the disease-driving proteins without also clearing their wild-type counterpart.

Zhaoyang Li and a team of researchers focused on the Huntington’s disease, caused by an abnormally long stretch of glutamine amino-acid residues in the huntingtin (HTT) protein. This expanded polyglutamine tract causes HTT to misfold.

Affected individuals typically carry one copy of the HTT gene that encodes the mutant protein, and one allele that encodes a protein with the normal-length glutamine tract. Cells are able to degrade the mutant huntingtin (mHTT) through autophagy2 — a clearance mechanism that involves the engulfment of proteins.

The study hypothesized that compounds that bind to both the mutant polyglutamine tract and the protein LC3B, which resides in the autophagosome, would lead to engulfment and enhanced clearance of mHTT. But no such compounds had been reported.

So, Li and colleagues conducted small-molecule screens to identify candidate compounds and used wild-type HTT in a counter-screen to rule out compounds that bind to the normal version of the protein.

They initially identified two candidates, dubbed 10O5 and 8F20. These compounds had been shown to inhibit the activity of the cancer-associated protein c-Raf and kinesin spindle protein (KSP), which has a key role in the cell cycle. They found that 10O5 and 8F20 were able to clear mHTT independently of their effects on these other proteins.

RelatedPosts

Common Cold Sore Virus May Mess With Your Brain Decades Later (and Cause Alzheimer’s)
Tweaking potassium in brain cells helps fight Huntington’s disease
Nanobodies On The Road To Curing Parkinson’s Disease

The researchers showed that the regions of the two candidates that interacted with mHTT and LC3B in the screen shared structural similarities. Next, they screened for compounds that shared these structural properties but were structurally distinct from other c-Raf and KSP inhibitors. This led them to discover two more compounds, AN1 and AN2, that link mHTT to LC3B and thereby selectively reduce levels of mHTT.

The compounds leave levels of wild-type HTT unchanged. This is crucial because HTT has multiple neuronal functions, both during embryonic development and after birth. Existing mHTT-lowering strategies typically affect both HTT alleles, which is not ideal.

The authors found encouraging evidence that the compounds could produce functional improvements in models of Huntington’s disease across three species. Patient-derived neurons treated with each of the compounds showed significantly less shrinkage, degeneration of neuronal projections and cell death than was seen in untreated neurons.

At the same time, flies that model Huntington’s disease and were treated with the compounds recovered climbing ability and survived longer than did untreated counterparts. Also, treated mice that model Huntington’s disease showed improvements in three motor tests, compared with untreated mice.

Looking ahead, there are several research paths. First, establishing the mechanism by which Li and colleagues’ compounds recognize proteins with expanded polyglutamine tracts but spare normal proteins. Then, testing the compounds in other models of polyglutamine disorders and assessing their effects.

Tags: huntington'sneurodegeneration

ShareTweetShare
Fermin Koop

Fermin Koop

Fermin Koop is a reporter from Buenos Aires, Argentina. He holds an MSc from Reading University (UK) on Environment and Development and is specialized in environment and climate change news.

Related Posts

Diseases

Common Cold Sore Virus May Mess With Your Brain Decades Later (and Cause Alzheimer’s)

byMihai Andrei
3 weeks ago
Parkinson’s Disease - Prion Protein Fibrils. Image Credits: Pixabay.
Biology

Nanobodies On The Road To Curing Parkinson’s Disease

byPatrick James Hibbert
7 years ago
Brain tissue from a mouse shows star-shaped astrocytes (green). Cells (blue) containing mutant protein (white) display lower levels of a potassium-regulating protein (red). Photo: UCLA
Mind & Brain

Tweaking potassium in brain cells helps fight Huntington’s disease

byTibi Puiu
11 years ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.