ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

West Antarctic bedrock is rising surprisingly fast — and this may slow down ice melt

Some rare good news.

Tibi PuiubyTibi Puiu
June 22, 2018
in Climate, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit
A picture of Amundsen Sea Embayment in West Antarctica with the ice sliced to show the bedrock and the earth cut to show the crust (brown) the bottom of the lithosphere (red area) and the mantle (yellow). Credit: Planetary Visions/ESA.
A picture of Amundsen Sea Embayment in West Antarctica with the ice sliced to show the bedrock and the earth cut to show the crust (brown) the bottom of the lithosphere (red area) and the mantle (yellow). Credit: Planetary Visions/ESA.

The bedrock underneath West Antarctica is rising at an astonishing rate, slowing down ice melt in a region where scientists have identified some of the most vulnerable glaciers. This is a rare bit of good news but scientists caution that this spring action shouldn’t substitute real action —  which is the only solution to averting runway melting of the West Antarctic ice sheet.

The findings concern the bedrock of West Antarctica which hosts the Pine Island and Thwaites glaciers, two of the fastest-melting glaciers on the planet. Should these two melt completely, sea levels would rise by a couple of feet, flooding millions of homes across coastal regions around the world and possibly crossing some island states off the map.

Pine Island and Thwaites can be found some 4000km away from the southernmost tip of South America, where they sit on a 300km long frozen plain and stem from a 3km-thick ice pool roughly the size of Texas.

“Together, they act as a plug holding back enough ice to pour 11 feet (3.4m) of sea-level rise into the world’s oceans,” US meteorologist Eric Holthaus, who was not involved in the present study, said in 2017.

Scientists have always been worried about the rapid collapse of the two monstrous glaciers. As warm water seeps through the cracks, it creates rifts in the glacier that eventually cause floating shelves — which drift away and melt. The bedrock gets deeper the further inland you go, causing progressively-thicker shelves to break off as every new iceberg exposes taller and taller cliffs. Because the ice so heavy the further inland meltwater gets, these taller cliffs can no longer support their own weight, setting off a crumbling chain reaction.

Calving front of Pine Island Glacier, where icebergs are born. Credit: Columbia University.
Calving front of Pine Island Glacier, where icebergs are born. Credit: Columbia University.

In a previous study, scientists estimated these key glaciers could conceivably collapse within 20 to 50 years. But new research led by Valentina Barletta, a geophysicist from the Technical University of Denmark, revealed that bedrock underneath the glaciers is rising rapidly, which will delay melting considerably.

Earth’s memory foam

Our planet’s mantle, on which the crust lies, is known to move up and down slightly thanks to a process of convection, wherein heat from the earth’s interior travels up and slowly lifts it, creating a wave that travels around the earth. The mantle also sinks or lifts as mass is deposited or removed from atop of it. Because of this, the mantle is lower in some places (where a huge glacier might sit, for instance) and higher in other places. Image sitting on a waterbed — you sink in it but, at the same time, water sloshes onto the side. When the mantle rises because of a melting glacier, scientists call this a glacier rebound.

The research team placed six GPS sensors across the Amundsen Sea Embayment, following them as they shifted up or down in time. They also used satellite measurements to monitor how the surface levels of nearby glaciers were dropping, as the ice melted.

RelatedPosts

Making cement and bricks out of the gemstone olivine could cut CO2 emissions by 11 percent
The 2C global warming goal may be buried in Paris
Is climate change causing more volcanic eruptions? Iceland provides some hints
World deforestation surprisingly results in net cooling effect

The researchers found that the bedrock beneath the ice is rising unexpectedly quickly, at an astonishing rate of 41 millimeters (about 2 inches) per year, as reported in the journal Science. This means that the bedrock in West Antarctica could gain 8 to 10 meters by the end of this century, when the uplift rates at the GPS sites will be 2.5 to 3.5 times more rapid than currently observed. Remember the waterbed analogy; according to Barletta, a combination of gravitational effects raises the sea level in northern Europe, as Antarctica loses ice. In contrast, when Greenland loses ice, it raises the sea level in the southern hemisphere.

“The results of our work will provide a very important contribution in the understanding of dynamics of the Earth along with the ice melting processes in Antarctica,” said Barletta in a statement.

“The rapid rise of the bedrock in this part of Antarctica suggests that the geology underneath the ice is different from what scientists had previously believed. The rate of uplift we found is unusual and very surprising. It’s a game changer,” said Terry Wilson, one of the leaders of the study and professor emeritus of Earth Sciences at Ohio State University.

Researchers say that we shouldn’t be overly optimistic about this good news. The planet’s atmosphere is still warming rapidly and CO2 levels are increasing, and with sufficient rapid warming, the two mega-glaciers are bound to retreat eventually.

“Apart from giving us a new picture of the earth dynamics in Antarctica, the new findings will push to improve ice models for WAIS to get a more precise picture of what will happen in the future” said Barletta. “They also tell that we clearly need to improve our knowledge of the Earth structure under the whole Antarctic continent.”

Tags: climate changeglacierglobal warmingiceshelf

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Climate

White House Wants to Destroy NASA Satellites Tracking Climate Change and Plant Health

byMihai Andrei
5 days ago
Climate

This Is the Oldest Ice on the Planet and It’s About to Be Slowly Melted to Unlock 1.5 Million Years of Climate History

byTibi Puiu
3 weeks ago
Climate

Deadly Heatwave Killed 2,300 in Europe, and 1,500 of those were due to climate change

byMihai Andrei
1 month ago
Climate

Climate Change Unleashed a Hidden Wave That Triggered a Planetary Tremor

byMihai Andrei
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.