ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Rice is losing its nutritional value due to rising CO2 levels

Rice is losing proteins, vitamins, and minerals due to rising CO2 in the atmosphere.

Tibi PuiubyTibi Puiu
May 23, 2018
in Climate, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Increasing carbon dioxide levels in the atmosphere due to human activity are lowering the nutritional value of rice, according to a new study published in Science Advances. 

Credit: Pixabay.

After wheat, rice is the second most important food crop in the developing world. Over two billion people in Asia and hundreds of millions in Africa and Latin America depend on rice for their daily calorie needs. It’s estimated that more than 40,000 varieties of cultivated rice (the grass species Oryza sativa) exist.

Rice is also an important source of protein and vitamins, which is why the latest findings by researchers at the University of Tokyo are so worrisome. Their experiments suggest that rising CO2 levels in the atmosphere are lowing the nutritional value of rice, specifically iron, zinc, protein, and vitamins B1, B2, B5, and B9.

The team grew rice at sites in China and Japan using an open-field method called FACE (free-air CO2 enrichment). Professor Kazuhiko Kobayashi and colleagues at the University of Tokyo decided to grow the rice in an open field because plants raised in a closed greenhouse do not grow as they would in normal field conditions. Air with higher carbon dioxide concentrations, as expected in the second half of this century (568 to 590 parts per million), was blown through 17-meter-wide (56-foot-wide) plastic pipe octagons at about 30 centimeters (1 foot) above the tops of plants within standard rice fields.

In total, the researchers analyzed 18 different varieties of rice for protein, iron, and zinc levels. Nine varieties of rice grown in China were used for the vitamin B1, B2, B5, and B9 analyses.

Experimental rice field near Tsukuba, Japan.Dr. Toshihiro HASEGAWA (National Agriculture and Food Research Organization of Japan).
Experimental rice field near Tsukuba, Japan.Dr. Toshihiro HASEGAWA (National Agriculture and Food Research Organization of Japan).

The two FACE experiments have provided a unique opportunity to investigate how a crop fares in response to predictably elevated levels of CO2 in the atmosphere. But like with any other unique science experiment, the Japanese researchers had to overcome some challenges, including the presence of uninvited guests.

“The unique experiments attracted other species. An example was raccoons in my own experience. We did the FACE experiment in farmer’s fields, where we installed plastic tubes to sample air from the field and measure CO2 concentrations in the experimental plots. Raccoons came out of the nearby mountains at night and tested the strength of their teeth against the plastic tubes. They eventually cut the air sampling tubes, which fell into the flooded water in the rice field jeopardizing our experiment. We then had to raise the tubes higher than their reach. The higher CO2 concentrations in the experimental plots also attracted blood-sucking insects, which we had to fight against while working in the plots,” Kobayashi told ZME Science.

Little is known about the mechanisms responsible for the decline in nutrient concentrations associated with elevated CO2. Some authors have proposed “carbohydrate dilution” whereby CO2-stimulated carbohydrate production by plants dilutes the rest of the grain components, but studies so far have been inconclusive. What’s certain is that it’s happening.

RelatedPosts

Curiosity, not how much science you know, is the best predictor of unbiased opinions
Ice sheets in Antarctica formed by massive fall in CO2
Another ignoble carbon milestone: in 2015 average CO2 levels crossed 400ppm
As sea level rises in Europe, setting up defenses would save money in the long-run

In many countries, rice is so important that they’re literally synonymous with food. The Chinese word for rice is the same as the word for food, in Thailand when you call your family to a meal you say, “eat rice”, and in Japan, the word for cooked rice is the same as the word for meal.

The Japanese don’t consume as much rice as they used to during the 1960s, for instance, relying on only about 20 percent of their daily calorie intake from the crop. However, people in Bangladesh, Cambodia, Indonesia, Lao People’s Democratic Republic, Myanmar, Vietnam, and Madagascar who receive at least 50 percent of their calories and protein from rice are the most vulnerable to poorer nutritional content.

Zinc deficiency is already linked to around 800,000 deaths among under-fives, in whom it can seriously exacerbate such conditions as diarrhea, pneumonia, and malaria, while iron deficiency is the main cause of anemia, a condition that contributes to around one in every five maternal deaths around the world.

“Our finding has demonstrated another reason why we have to be concerned about the nutrition for the poorer fractions of the population in less developed countries. Any measures to improve their nutrition would effectively alleviate the negative effects of the lower nutrient content under higher CO2 level. The measures could be better policies and/ or better varieties, but must reach the target population,” Kobayashi wrote in an e-mail.

As the world’s population continues to swell, not only will developing countries have to grow more rice and improve their yield, they will also have to find ways to offset the poorer nutritional value of the crops. Of course, rice won’t be alone. Previous studies have found that rising levels of carbon dioxide in the atmosphere reduce the nutritional value of other staple crops, such as wheat or soy.

“This is one of the multitudes of challenges of climate change due to the energy production based on fossil fuel burning. We, in the so-called developed countries, take advantage of the fossil fuel energies, while having little troubles with the less nutritious grains, because we take the nutrients from other food stuffs. On the other hand, those in the less-developed countries depend grains for their nutrient intake, and would be affected by the changes in grain nutrient content. And, they are much less responsible for the climate change than we are on per person basis. This is really a shame on us, I think,” Kobayashi concluded.

Scientific reference: C. Zhu, K. Kobayashi, I. Loladze, J. Zhu, Q. Jiang, X. Xu, G. Liu, S. Seneweera, K. L. Ebi, A. Drewnowski, N. Fukagawa, L. H. Ziska, Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 4, eaaq1012 (2018).

Tags: climate changeco2global warmingrice

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Champiñón Hongos Naturaleza Setas Reino Fungi
Animal facts

What do Fungi, Chameleons, and Humans All Have in Common? We’re all Heterotrophs

byShiella Olimpos
1 week ago
Climate

Climate Change Is Rewriting America’s Gardening Map and Some Plants Can’t Keep Up

byGrace van Deelen
2 weeks ago
Climate

Scientists Create “Bait” to Lure Baby Corals Back to Dying Reefs

byMihai Andrei
4 weeks ago
Science

This Tree Survives Lightning Strikes—and Uses Them to Kill Its Rivals

byTudor Tarita
2 months ago

Recent news

This Self-Assembling Living Worm Tower Might Be the Most Bizarre Escape Machine

June 12, 2025

A Provocative Theory by NASA Scientists Asks: What If We Weren’t the First Advanced Civilization on Earth?

June 12, 2025

Big Tech Said It Was Impossible to Create an AI Based on Ethically Sourced Data. These Researchers Proved Them Wrong

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.