ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Researchers find a new class of planets, made of sapphires and rubies

Ca-ching!

Alexandru MicubyAlexandru Micu
December 22, 2018
in Geology, News, Science, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Researchers report that a new class of exoplanets called super-Earths may be littered with sapphires and rubies.

Super-Earth.
Illustration of one of the exotic super-Earth candidates, 55 Cnc e.
Image credits Thibaut Roger

Planets that orbit very close to their star might not sound like a good vacation spot — but they may be very bling. Such planets, a special kind of ‘super-Earths’, contain high quantities of calcium, aluminum, and their oxides, a new paper reports. These oxides are more commonly known as sapphires and rubies.

Gems

“What is exciting is that these objects are completely different from the majority of Earth-like planets,” says lead author Caroline Dorn, “if they actually exist.”

The study focused on a planet called HD219134 b in the constellation Cassiopeia. This planet, which is some 21 light years away from Earth, is very different from our own in that its core isn’t rich in iron, but in calcium and aluminum. It likely also looks very different, too. Because the planet’s chemistry is dominated by these metals, there is also a large quantity of their oxides littering its surface — and those oxides are rubies and sapphires.

HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets, reports Caroline Dorn and her colleagues from the Universities of Zurich and Cambridge.

The main thing that sets them apart from other known planets is their formation. Stars start out as masses of gas which condense and start spinning, forming a disk, with the soon-to-be star at its center. Rocky planets (like Earth) later accrete from the solid leftovers of this disk (the bits that remain after the star formed and the disk dispersed).

Generally, since most matter close to the center is drawn in by the young star, planets form from solid bits formed in areas where iron, magnesium, and silicon condense. That’s why the Earth or Mars are rich in such elements. Most of the super-Earths known so far have been formed with material from such regions. However, they don’t form only there — planets can also accrete closer to the star, where conditions are much hotter.

“There, many elements are still in the gas phase and the planetary building blocks have a completely different composition,” says Dorn.

The team used computer simulations to calculate that planets forming in such hot regions would be mainly constituted from calcium, aluminum, magnesium and silicon — and almost no iron. This chemical difference would further impart other differences to such super-Earths compared to our planet. For example, they couldn’t form a magnetic field (unlike other Super-Earths). Without such a field to insulate the planet from solar winds, their atmospheres would likely be very different from our own.

RelatedPosts

Follow the last 30 years of humanity shaping the planet through the eyes of Google’s Timelapse
What causes the seasons?
How scientists detected water on an alien planet for the first time
Astronomers baffled by ‘fluffy’ exoplanet with the density of cotton candy

The team therefore believes that a new, exotic class of super-Earths — one formed from high-temperature condensates — should be established to define such planets.

“We have found three candidates that belong to a new class of super-Earths with this exotic composition,” Dorn explains. “In our calculations we found that these planets have 10 to 20 percent lower densities than the Earth.

Why these planets have such low densities isn’t yet known. One of the hypotheses the team explored was that such planets have thick atmospheres, which would lead to an overall lower density — but two of the planets they looked at didn’t even have an atmosphere any longer as they orbit too close to their star. They also considered whether these low densities are the product of planetary cores that contain disproportionately large amounts of water or gas — however, this hypothesis was disproved as well.

The paper “A new class of Super-Earths formed from high-temperature condensates: HD219134 b, 55 Cnc e, WASP-47 e.” has been published in the journal Monthly Notices of the Royal Astronomical Society.

Tags: earthexoplanetGemsRubySaphireSuper

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

Distant Exoplanet Triggers Stellar Flares and Triggers Its Own Destruction

byKimberly M. S. Cartier
2 weeks ago
Environment

Humans Built So Many Dams, We’ve Shifted the Planet’s Poles

byTudor Tarita
4 weeks ago
Astronomy

Earth Is Spinning Faster Than Usual. Scientists Aren’t Sure Why

byTudor Tarita
1 month ago
Astronomy

The James Webb telescope just found a planet by actually ‘seeing’ it

byMihai Andrei
2 months ago

Recent news

The disturbing reason why Japan’s Olympic athletes wear outfits designed to block infrared

August 19, 2025
Erin Kunz holds a microelectrode array in the Clark Center, Stanford University, on Thursday, August 8, 2025, in Stanford, Calif. The array is implanted in the brain to collect data. (Photo by Jim Gensheimer)

Brain Implant Translates Silent Inner Speech into Words, But Critics Raise Fears of Mind Reading Without Consent

August 19, 2025

‘Skin in a Syringe’ Might be the Future of Scar Free Healing For Burn Victims

August 18, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.