ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Rattlesnakes modulate their tail wagging to make you think they’re closer than they are

Actually, I'm not mad at all. Thank you, snakebros.

Alexandru MicubyAlexandru Micu
August 20, 2021
in Animals, Biology, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

The rattling of rattlesnakes isn’t as simple a warning as we assumed. New research explains that this sound is subtly modulated to change the listener’s perception of its source, making it seem the snake is closer than it actually is.

Image via Pixabay.

Rattlesnakes are quite famous for the warning sounds they produce with their tails, the iconic ‘rattling’ that gives them their name. Far from being a simple wagging of the tail, however, new research suggests that this rattling is a fine-tuned intimidation tool. As the snake rattles its tail, it makes an abrupt shift to a high-frequency mode, the team explains. This makes listeners perceive the source of sound as being closer than it actually is.

In effect, while definitely being deadly, rattlesnakes also engage in some strategic deception.

Rattle my bones

“Our data show that the acoustic display of rattlesnakes, which has been interpreted for decades as a simple acoustic warning signal about the presence of the snake, is in fact a far more intricate interspecies communication signal,” says senior author Boris Chagnaud at Karl-Franzens-University Graz. “The sudden switch to the high-frequency mode acts as a smart signal fooling the listener about its actual distance to the sound source. The misinterpretation of distance by the listener thereby creates a distance safety margin.”

Past studies have shown that rattlesnakes’ rattles vary in frequency, but they didn’t give us any insight into why they do, or what this behavior actually achieves in the real world.

The hypothesis behind this paper was born while Chagnaud was visiting an animal facility and noticed that rattlesnakes increased the frequency of their rattling as someone approached the snakes — but decreased when they walked away. From this observation, Chagnaud and his team developed an experiment in which objects appeared to move towards rattlesnakes. One of these objects was a human-like torso, and another was a looming black disk. The illusion of forward-back movement was created by making the objects increase or decrease in size.

The team reports that over the course of this experiment, as potential threats approached the snakes, they would increase the frequency they rattled at to approximately 40 Hz. But, abruptly, they would switch to an even higher frequency range, between 60 and 100 Hz.

Further experimentation revealed that rattlesnakes adapt their rattling frequency to the (perceived) approach velocity of an object, rather than its size.

RelatedPosts

Whale skulls act like resonance chambers to help them hear underwater
How to stop the annoying sound of a dripping tap with science
Scientists found a way to make sound travel in only one direction
Learning music changes how our brains process language, and vice-versa

“In real life, rattlesnakes make use of additional vibrational and infrared signals to detect approaching mammals, so we would expect the rattling responses to be even more robust,” Chagnaud says.

Inside a virtual reality environment, the team then tested how this shift in rattling frequency is perceived by a person or animal close to the snake. A group of 11 participants were asked to engage in a simulated walk inside the virtual environment — a grassland — and told they’ll be walking towards a snake. Its rattling rate increased as the participants closed in, as per the previous findings, and suddenly raised it to 70 Hz at a virtual distance of 4 meters.

The participants were asked to tell the team when the rattling sounded like it came from only 1 meter away. All the participants underestimated the distance that the virtual snake was at after it increased its rattling frequency.

“Snakes do not just rattle to advertise their presence, but they evolved an innovative solution: a sonic distance warning device similar to the one included in cars while driving backwards,” Chagnaud says. “Evolution is a random process, and what we might interpret from today’s perspective as elegant design is in fact the outcome of thousands of trials of snakes encountering large mammals. The snake rattling co-evolved with mammalian auditory perception by trial and error, leaving those snakes that were best able to avoid being stepped on.”

The paper “Frequency modulation of rattlesnake acoustic display affects acoustic distance perception in humans” has been published in the journal Current Biology.

Tags: frequencyrattlesnakesoundwarning

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

A Nearby Star Sings a Stellar Tune, and Scientists can Hear Its Age

byTudor Tarita
1 month ago
Science

Aztec Death Whistle Was Designed to Haunt the Mind, Brain Scans Confirm

byTibi Puiu
7 months ago
News

Scientists found a way to make sound travel in only one direction

byTibi Puiu
8 months ago
Mind & Brain

You can literally hear the sound of silence, surprising study says

byTibi Puiu
12 months ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.