ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

We’ve just discovered the Earth’s largest drum: our planet’s magnetosphere

It's larger than the Earth itself.

Mihai AndreibyMihai Andrei
February 13, 2019 - Updated on October 16, 2023
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

A new study found that the Earth’s magnetic shield beats like a drum when it’s hit by external impulses. This confirms a decades-old theory

Artist rendition of a plasma jet impact (yellow) generating standing waves at the magnetopause boundary (blue) and in the magnetosphere (green). The outer group of four THEMIS probes witnessed the flapping of the magnetopause over each satellite in succession, confirming the expected behavior/frequency of the theorized magnetopause eigenmode wave. Image credits: E. Masongsong/UCLA, M. Archer/QMUL, H. Hietala/UTU.

The Earth’s magnetic field is driven by convection currents in the Earth’s outer core. Differences in temperature, pressure, and composition within the outer core cause some parts of the core to move around. The flow of this liquid iron generates electric currents, which in turn produce magnetic fields. The resulting magnetic fields produce further electric currents, which then generate their own magnetic fields, and so on. This natural self-sustaining loop is called a geodynamo, and produces a magnetic field that loops around the entire planet.

This magnetosphere is essential for life on Earth, as it protects the atmosphere from being eroded by the solar wind and deflects cosmic rays (high-energy charged particles that are mostly from outside the Solar System). However, we’re still learning a lot about the magnetosphere. Obviously, no one has gone down to the inner core to actually see how it is formed, and measurements of its overall structure remain challenging. In a new paper, researchers describe a feature of this field which had been predicted mathematically 40 years ago, but never previously observed.

Essentially, when an impulse strikes the outer boundary of the magnetopause, ripples can travel along its surface. These then get reflected back when they approach the magnetic poles. It’s a bit like how acoustic waves are absorbed and reflected by a drum. When the impulse interacts with the Earth’s magnetosphere, the interference the waves leads to a standing wave pattern in which specific points appear to be standing still while others vibrate back and forth — it’s exactly the way a drum resonates when struck.

Dr. Martin Archer, a space physicist at Queen Mary University of London and lead author of the paper, explains:

“There had been speculation that these drum-like vibrations might not occur at all, given the lack of evidence over the 45 years since they were proposed. Another possibility was that they are just very hard to definitively detect.”

“Earth’s magnetic shield is continuously buffeted with turbulence so we thought that clear evidence for the proposed booming vibrations might require a single sharp hit from an impulse. You would also need lots of satellites in just the right places during this event so that other known sounds or resonances could be ruled out. The event in the paper ticked all those quite strict boxes and at last, we’ve shown the boundary’s natural response,” said Archer.

In order to finally prove this theory, researchers used data from five NASATHEMIS satellites, designed specifically to study the magnetosphere. These five satellites were ideally located when a strong isolated plasma jet slammed into the magnetopause.

The probes were able to detect the boundary’s oscillations and the resulting sounds within the Earth’s magnetic shield, which confirmed the drum model and ruled out any alternative explanations

RelatedPosts

Astrochemists can now study stars’ magnetic fields using alcohol
Weakening magnetic field 590 million years ago could have sparked life’s big leap
Terahertz-speed RAM and hard drives now possible through all-optical switching
Mesopotamian bricks help scientists map Earth’s magnetic field changes

The Earth isn’t alone in having a magnetosphere. Other planets like Mercury, Jupiter and Saturn, have also been found to have similar magnetic shield — which means that drum-like vibrations may be possible elsewhere. However, further research is needed to understand just how often these vibrations occur and what their significance is.

Movements of the magnetopause can have wide-ranging effects on space weather, potentially damaging technology like power grids, GPS, and even passenger airlines.

Journal Reference: ‘Direct Observations Of A Surface Eigenmode Of The Dayside Magnetopause’. Archer et al. Nature Communications.
Tags: geodynamomagnetic fieldmagnetosphere

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Future

The World’s Smallest Flying Robot Is Here. It Weighs Less Than a Raindrop and It’s Powered by Invisible Forces

byTibi Puiu
2 months ago
News

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

byTibi Puiu
6 months ago
Geology

Researchers find evidence of hot water on Mars — in a rock on Earth

byMihai Andrei
7 months ago
News

Earth’s Magnetic Field Flipped 41,000 Years Ago. Now You Can Hear It — And It’s Otherworldly

byTibi Puiu
8 months ago

Recent news

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025

In the UK, robotic surgery will become the default for small surgeries

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.