ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Research → Discoveries

Smallest liquid droplets created at LHC are 100,000th the size of a hydrogen atom

Tibi PuiubyTibi Puiu
May 20, 2013
in Discoveries, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

Scientists closely working with the  Large Hadron Collider, the largest and most powerful particle accelerator in the world, have identified evidence of the minuscule droplets produced in the aftermath of high energy proton and lead ions collisions. If their calculations are right, then these are the smallest droplets of liquid ever encountered thus far, just three to five protons in size. That’s about one-100,000th the size of a hydrogen atom or one-100,000,000th the size of a virus. WOW!

“With this discovery, we seem to be seeing the very origin of collective behavior,” said  Julia Velkovska, professor of physics at Vanderbilt who serves as a co-convener of the heavy ion program of the CMS detector, the LHC instrument that made the unexpected discovery. “Regardless of the material that we are using, collisions have to be violent enough to produce about 50 sub-atomic particles before we begin to see collective, flow-like behavior.”

A three-dimensional view of a p-Pb collision that produced collective flow behavior. The green lines are the trajectories of the sub-atomic particles produced by the collision reconstructed by the CMS tracking system. The red and blue bars represent the energy measured by the instrument's two sets of calorimeters. (CMS Collaboration)
A three-dimensional view of a p-Pb collision that produced collective flow behavior. The green lines are the trajectories of the sub-atomic particles produced by the collision reconstructed by the CMS tracking system. The red and blue bars represent the energy measured by the instrument’s two sets of calorimeters. (CMS Collaboration)

These tiny droplets “flow” in a manner similar to the behavior of the quark-gluon plasma, a state of matter that is a mixture of the sub-atomic particles that makes up protons and neutrons and only exists at extreme temperatures and densities. Some scientists claim that at the very dawn of the Universe’s existence shortly after the big bang, this primordial cosmic goo was everywhere, because of much higher temperature and density conditions.

These interactions weren’t actually targeted for observation by the LHC researchers, though. Scientists were looking to check the validity of their lead-lead results, and scheduled a proton-lead ion collision for as a simply control run – they ended up with quark-gluon plasma in the process.

“The proton-lead collisions are something like shooting a bullet through an apple while lead-lead collisions are more like smashing two apples together: A lot more energy is released in the latter,” said Velkovska.

Indeed, last September LHC researchers found that in five percent of the  protons and lead nuclei collisions —those that were the most violent – evidence of collective behavior was encountered. In turn, this allowed for the formation of   liquid droplets about one tenth the size of those produced by the lead-lead or gold-gold collisions.  The data gathered then, however, wasn’t enough to discount the influence of particle jets. New experiments in January and February of this year resulted in hundreds of cases where the collisions produced more than 300 particles flowing together.

According to doctoral student Shengquan Tuo, who recently presented the new results at a workshop held in the European Centre for Theoretical Studies in Nuclear Physics and Related Areas in Trento, Italy, only two models were advanced to explain their observations at the workshop. Of the two, the plasma droplet model seems to fit the observations best.

The new observations are contained in a paper submitted by the CMS collaboration to the journal Physics Letters B and posted on the arXiv preprint server.

[source]

RelatedPosts

Particle accelerator on a chip demonstrated
LHC reaches highest energy yet
Regular blood donations can help remove toxic ‘forever chemicals’ from our bodies
Computer simulation predicts new exotic particle composed of two baryons
Tags: large hadron colliderplasmaquarkquark gluon plasma

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

CERN Creates Gold from Lead and There’s No Magic, Just Physics

byMihai Andrei
1 month ago
News

France fusion reactor breaks record for plasma duration

byMihai Andrei
4 months ago
News

Physicists Observe Entangled Top Quarks for the First Time

byTibi Puiu
9 months ago
Science

Plasma can protect hydroponic crops from pathogens

byMihai Andrei
1 year ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.