ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

Nanoparticle-tech converts solar energy into steam with extreme efficiency

Tibi PuiubyTibi Puiu
November 20, 2012
in Physics, Renewable Energy, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit
The solar steam device developed at Rice University has an overall energy efficiency of 24 percent, far surpassing that of photovoltaic solar panels. It may first be used in sanitation and water-purification applications in the developing world. (c) Jeff Fitlow
The solar steam device developed at Rice University has an overall energy efficiency of 24 percent, far surpassing that of photovoltaic solar panels. It may first be used in sanitation and water-purification applications in the developing world. (c) Jeff Fitlow

While current solar energy conversion technology is preoccupied with generating electricity with as much efficiency as possible, researchers at Rice University have invented a new technological set-up consisting of nanoparticles smaller than the the wavelength of light that can transform solar energy into steam almost instantly. Their findings show a registered efficiency of 24%, while current solar panel standards range at only 15%.

Since the heydays of the industrial revolution steam has been at the center of energy generation. Even today, 90% of the world’s electricity relies on steam power. Most of this steam is either generated by nuclear power plants or humongous industrial boilers, the Rice invention however is a lot more delicate in nature and has been developed for low-cost sanitation, water purification and human waste treatment for the developing world.

“This is about a lot more than electricity,” said LANP Director Naomi Halas, the lead scientist on the project. “With this technology, we are beginning to think about solar thermal power in a completely different way.”

The technology works by employing light absorbing nanoparticles submerged into water that convert solar energy into heat. Moreover  even when submerged into water stacked with ice, Neumann showed she could create steam from nearly frozen water, albeit a lens to concentrate sunlight was used. You can watch the experiment and more details about the project in the video below.

“We’re going from heating water on the macro scale to heating it at the nanoscale,” Halas said. “Our particles are very small — even smaller than a wavelength of light — which means they have an extremely small surface area to dissipate heat. This intense heating allows us to generate steam locally, right at the surface of the particle, and the idea of generating steam locally is really counterintuitive.”



Generating steam directly from solar energy

This is made possible since the nanoparticles after absorbing light instantly reach temperatures well above the boiling point of water, generating steam in the process at temperatures of 150°C (300°F) on the their surface. This is were the catch lies, as well, since the steam can only be generated over a very small surface, locally.

The technology converts about 80 percent of the energy coming from the sun into steam, which means it could generate electricity with an overall efficiency of 24 percent. The Rice researchers believe people in the developing world would be the first to benefit from this kind of technology, as there countless communities around the globe where access to grid electricity is non-existant. The scientists have already demonstrated that their technology can be used for sterilizing medical and dental instruments at clinics that lack electricity.

RelatedPosts

Dolphin’s sixth sense helps them detect electric fields
Organic Photovoltaics Just Hit 20% Efficiency — Here’s Why That’s a Big Deal
A candle’s flame burns millions of diamond nano-particles every second
Examples of electricity in nature

“Solar steam is remarkable because of its efficiency,” said Neumann, the lead co-author on the paper. “It does not require acres of mirrors or solar panels. In fact, the footprint can be very small. For example, the light window in our demonstration autoclave was just a few square centimeters.”

The findings were detailed in the journal ACS Nano.

source: Rice University

Tags: electricitynanoparticlessolar energysolar panels

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Biology

These Bacteria Exhale Electricity and Could Help Fight Climate Change

byTudor Tarita
1 week ago
News

Hidden Communication Devices Found in Chinese-Made Inverters Could Put U.S. Electrical Grid at Risk

byTudor Tarita
3 weeks ago
Agriculture

America’s Cornfields Could Power the Future—With Solar Panels, Not Ethanol

byTudor Tarita
2 months ago
Culture & Society

The surprising reason why the UK has power surges because of TV programs

byMihai Andrei
2 months ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.