Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
No Result
View All Result
Home Science Physics

Oil spills could offer valuable information in modelling volcanic eruptions

Mihai Andrei by Mihai Andrei
August 13, 2013
in Physics
Reading Time: 2 mins read
A A
Share on FacebookShare on TwitterSubmit to Reddit

What do volcanic eruptions, oil spills, sewages and chimneys all have in common? Not much at a first glance – but if you ask Peter Baines, a scientist at the University of Melbourne in Australia, they are tightly connected; in all these events, a fluid rises into a environment stratified by density (like the atmosphere or the ocean).

Example of aquatic stratification
Example of aquatic stratification

It’s not the first time scientist attempt to model these events (intrusions), but it is the first time a new element is added – the crossflow caused by winds and currents. Banes thought the most useful application of his work is estimating how much ash will pour out of a volcano, and how much oil will gush as a result of a spill. Baines is now working with volcanologists in Britain to apply his model to historic eruptions and see if it adds up. He focused on the Late Campanian Event and the Toba supereruption that occurred around 73,000 years ago in Indonesia. Using information derived from sedimentary deposits of ash and tuff, geologists are trying to estimate the amount and speed of ejected material, and see if it fits with what Baines ‘predicted’.

Sorry to interrupt, but you should really...

...Join the ZME newsletter for amazing science news, features, and exclusive scoops. More than 40,000 subscribers can't be wrong.

   

“Most of what we know about prehistoric eruptions is from sedimentary records,” said Baines. “You then have to try to infer what the nature of the eruption was, when this is the only information you’ve got.”

To understand how intrusions work in a stratified environment in the presence of crossflows Baines developed what he calls a semi-analytical model: he did begin with standard fluid dynamics equations, but then he used numerical calculations to approximate solutions for specific combinations of source flow, spread rates, crossroad speed and direction – he reached quite an interesting conclusion: under normal wind speeds, the intruding fluid reached a maximum thickness at a certain distance upstream from the source, and thinned in the downstream direction. The distance to the upstream stagnation point depended much more on the rate of source flow than the crossflow speed. Now, it remains to be seen if this theoretical model will pass the practice test.

ADVERTISEMENT
ADVERTISEMENT

Tags: fluid dynamicintrusionNewtonian fluidvolcanic eruption
ShareTweetShare
Mihai Andrei

Mihai Andrei

Andrei's background is in geophysics, and he's been fascinated by it ever since he was a child. Feeling that there is a gap between scientists and the general audience, he started ZME Science -- and the results are what you see today.

ADVERTISEMENT
ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.