ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

Oil spills could offer valuable information in modelling volcanic eruptions

Mihai AndreibyMihai Andrei
August 13, 2013
in Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Mount Doom from LOTR set to erupt – in real life
Volcano screams may explain unusually powerful explosion
The Bulge is back: Three Sister volcano in Oregon triggers swelling but is unlikely to erupt
The Permian extinction – caused by “lemon juice” acidic rain ?

What do volcanic eruptions, oil spills, sewages and chimneys all have in common? Not much at a first glance – but if you ask Peter Baines, a scientist at the University of Melbourne in Australia, they are tightly connected; in all these events, a fluid rises into a environment stratified by density (like the atmosphere or the ocean).

Example of aquatic stratification
Example of aquatic stratification

It’s not the first time scientist attempt to model these events (intrusions), but it is the first time a new element is added – the crossflow caused by winds and currents. Banes thought the most useful application of his work is estimating how much ash will pour out of a volcano, and how much oil will gush as a result of a spill. Baines is now working with volcanologists in Britain to apply his model to historic eruptions and see if it adds up. He focused on the Late Campanian Event and the Toba supereruption that occurred around 73,000 years ago in Indonesia. Using information derived from sedimentary deposits of ash and tuff, geologists are trying to estimate the amount and speed of ejected material, and see if it fits with what Baines ‘predicted’.

“Most of what we know about prehistoric eruptions is from sedimentary records,” said Baines. “You then have to try to infer what the nature of the eruption was, when this is the only information you’ve got.”

To understand how intrusions work in a stratified environment in the presence of crossflows Baines developed what he calls a semi-analytical model: he did begin with standard fluid dynamics equations, but then he used numerical calculations to approximate solutions for specific combinations of source flow, spread rates, crossroad speed and direction – he reached quite an interesting conclusion: under normal wind speeds, the intruding fluid reached a maximum thickness at a certain distance upstream from the source, and thinned in the downstream direction. The distance to the upstream stagnation point depended much more on the rate of source flow than the crossflow speed. Now, it remains to be seen if this theoretical model will pass the practice test.

Tags: fluid dynamicintrusionNewtonian fluidvolcanic eruption

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Geology

Most diamonds come from violent volcanic eruptions. Scientists have now finally figured out how

byTibi Puiu
2 years ago
Geology

The Bulge is back: Three Sister volcano in Oregon triggers swelling but is unlikely to erupt

byMihai Andrei
3 years ago
An echosounder image showing the undersea volcano called Havre Seamount, including a new cone that formed during the July 2012 eruption. Credit: NIWA/GNS Science.
Geology

Little-known 2012 volcanic eruption was actually the largest in over a century, new data shows

byMihai Andrei
7 years ago
Credit: A colored map of mantle flow under the  North American tectonic plate. The warm colors indicate lower speed, implying that rock in those regions is less dense, likely warmer and rising toward the surface. Credit: Vadim Levin/Rutgers University-New Brunswick.
Geology

Warm rock beneath New England hints of upcoming volcanic eruption millions of years from now

byTibi Puiu
7 years ago

Recent news

The Cubist of the Undergrowth: Scientists Discover Snail with Picasso-Like Shell

May 11, 2025

Sexual Fantasies During Surgery Are a Disturbing Side Effect of Sedatives No One Talks About

May 11, 2025 - Updated on May 12, 2025

Nutrition expert says this less painful alternative to intermittent fasting works just as well

May 11, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.