ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Anatomy News

Scientists image organs at microscopic scales

In a new study published in Nature, researchers have demonstrated a technique that allows the mapping of organs at microscopic scales.

Mihai AndreibyMihai Andrei
November 26, 2015
in Anatomy News, News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Browse the brain one cell at a time in the most detailed atlas ever made
Pig organ transplants into humans might be two years away in China
Genetically-altered pigs to become humanity’s source for “spare” organs
Organ size is determined by a protein

In a new study published in Nature, researchers have demonstrated a technique that allows the mapping of organs at microscopic scales; they detail its use and produced images of the microvessels in the brain of a live rat.

Image of the whole brain vasculature at microscopic resolution in the live rat using ultrafast Ultrasound Localization Microscopy: Local density of intravascular microbubbles in the right hemisphere, quantitative estimation of blood flow speed in the left hemisphere. Credit: ESPCI/INSERM/CNRS
Image of the whole brain vasculature at microscopic resolution in the live rat using ultrafast Ultrasound Localization Microscopy: Local density of intravascular microbubbles in the right hemisphere, quantitative estimation of blood flow speed in the left hemisphere.
Credit: ESPCI/INSERM/CNRS

Current techniques of microscopic imaging are not ideal. Just like in geological imaging techniques, there’s a tradeoff between penetration depth, resolution, and time of acquisition. In other words, if you want to see all the way through the human body, you won’t have good enough resolution – or you will but it will take a very long time. Until now, conventional imaging techniques have worked at milimetre and sub-milimetre scale at best, being limited by one of the fundamental laws of physics: features smaller than the wavelength of the radiation used for imaging cannot be resolved. But Mickael Tanter, a professor at the Langevin Institute and his colleagues have come up with a new approach, and report a new super-resolution.

Like a few other recent studies, they used microbubbles, with diameters of 1–3 micrometres, which were injected into the bloodstream of live rats. They then combined deep penetration and super-resolution imaging in a technique they call ‘ultrafast ultrasound localization microscopy’. With this, they obtained ultra fast frame rates (500 / second), and achieved a resolution equal to the rat brain microvasculature – less than 10 micrometers in diameter (0.01 milimetres).

While this is still a work in progress, authors believe it can help doctors make better diagnostics and better understand how some diseases affect the body.

 

Tags: bodyimagingorgan

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Image credits: Wallpaper Flare.
News

Scientists discover solar cell material that could revolutionize medical imaging

byFermin Koop
2 years ago
Human Body

What is pain, and why do we even need it?

byAlexandru Micu
4 years ago
Diseases

Human mini-livers set the stage for an organ donor free future

byFermin Koop
5 years ago
Anatomy

The extracellular matrix, and how it keeps you in tip top shape

byAlexandru Micu
6 years ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.