ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists believe they’ve found a particle made entirely of strong nuclear force – a glueball

After decades of searching, researchers believe they have finally discovered a glueball - a proposed particle that consists solely of gluon particles.

Mihai AndreibyMihai Andrei
October 15, 2015
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

After decades of searching, researchers believe they have finally discovered a glueball – a proposed particle that consists solely of gluon particles, without valence quarks, that is instrumental to the Standard Model of Physics, but hasn’t been observed until now.

A crash course in particle physics

Nucleons consist (left) of quarks (matter particles) and gluons (force particles). A glueball (right) is made up purely of gluons. Image via Physorg.

There are four forces governing the basic interactions of particles – these are called the fundamental forces: gravity, electromagnetic, weak nuclear and strong nuclear. All the interactions in the universe can be described by some combination of these forces. Now, in 1970, physicists tried to write down how these forces interact with each other at the subatomic level, and predicted all the particles that they believe make up the universe. The current formulation was finalized in the mid-1970s upon experimental confirmation and since then, further experiments have confirmed the validity of the Standard Model.

According to the model, protons and neutrons are made of minuscule elementary particles called quarks. These quarks are held together by even smaller particles, gluons. Gluons are massless particles somewhat similar to photons – just like photons are responsible for exerting the electromagnetic force, gluons are responsible for exerting the strong nuclear force. In a way, they are strong nuclear force.

“In particle physics, every force is mediated by a special kind of force particle, and the force particle of the strong nuclear force is the gluon,” explains one of the researchers, Anton Rebhan from the Vienna University of Technology.

Finding glueballs

But there is one major difference: while photons aren’t affected by the force they exert, gluons are. In other words, gluons can’t be held together by strong nuclear force, but they can do exert strong magnetic force on other particles; that’s just how the strange world of particle physics sometimes works.

However, while glueballs are massless on their own, their interactions with other glueballs does give them a mass, which means that scientists can theoretically detect them, albeit indirectly, through their disintegration process, but that’s extremely difficult because in particle accelerators, glueballs tend to mix with other particles (namely meson states).

However, Rebhan and his team published a report in Physical Review Letters which gives a lot of hope for detecting these particles.

“Our calculations show that it is indeed possible for glueballs to decay predominantly into strange quarks,” he says.

They will now analyze more data from the Large Hadron Collider at CERN (TOTEM and LHCb) in Switzerland and an accelerator experiment in Beijing (BESIII) to help confirm their find.

RelatedPosts

New exotic particle behaviour found at CERN
LHC signals hint at flaws in the Standard Model of Physics
New LHC results could be a back-breaker for the Standard Model of Physics
LHC rare findings deal major blow to supersymmetry

“These results will be crucial for our theory,” says Rebhan. “For these multi-particle processes, our theory predicts decay rates which are quite different from the predictions of other, simpler models. If the measurements agree with our calculations, this will be a remarkable success for our approach.”

 

Tags: glueballgluonmeson

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

Physicists might have just discovered ‘glueballs’: the particles made entirely of force

byTibi Puiu
1 year ago
Image via CERN.
News

New LHC results could be a back-breaker for the Standard Model of Physics

byMihai Andrei
9 years ago
A view inside the LHCb experiment's muon detector at the Large Hadron Collider. Image credits: CERN.
News

LHC signals hint at flaws in the Standard Model of Physics

byMihai Andrei
10 years ago
Physics

LHC rare findings deal major blow to supersymmetry

byMihai Andrei
13 years ago

Recent news

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

June 11, 2025

Everyone Thought ChatGPT Used 10 Times More Energy Than Google. Turns Out That’s Not True

June 11, 2025

World’s Smallest Violin Is No Joke — It’s a Tiny Window Into the Future of Nanotechnology

June 11, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.