ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

The Earth is smack in the middle of a ‘dark matter hurricane’

And this could prove the perfect opportunity to identify the elusive form of matter.

Tibi PuiubyTibi Puiu
November 14, 2018
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

According to an international team of astronomers, our solar system is in the path of a “dark matter hurricane” — but there’s no need to panic. The whole event is totally harmless and, what’s more, might actually help scientists finally detect this elusive phenomenon.

Credit: C. O'Hare; NASA/Jon Lomberg.
Credit: C. O’Hare; NASA/Jon Lomberg.

Dark matter makes up roughly 27% of the universe, whereas “regular” matter accounts for only 5% — the rest being accounted for by dark energy. despite its ubiquity, nobody knows what dark matter really is or how it works. At the same time, nothing other than dark matter can explain the motion of stars and galaxies, which are expanding more than can be accounted for by regular, visible matter.

Although the evidence for the existence of dark matter is very strong, identifying it has proven extremely challenging — but we may now have a good shot. Researchers from Universidad de Zaragoza, King’s College London and the Institute of Astronomy in the U.K. have been studying a stellar stream left behind by a dwarf spheroidal galaxy that was devoured by the Milky Way aeons ago. The S1 stream, as it was called, was discovered just last year by a team studying data from the Gaia satellite.

Other such streams have been observed before, but this is the first to cross paths with our own solar system. Luckily, none of the 30,000 stars that comprise S1 will collide with us. However, the dark matter that’s moving along with this stream might be picked up by detectors on Earth.

According to several models showing the distribution of the dark matter and its density, the dark matter hurricane is traveling at a staggering 500 km/s. The analysis also allowed the researchers to predict which possible signatures of the stream scientists ought to look for to find dark matter. For instance, the results suggest that WIMP detectors have a slim chance of picking up anything. Weakly interacting massive particles (WIMPs) are hypothetical particles that are thought to constitute dark matter and, by virtue of their weak-scale interaction, WIMPs should be able to be observed by directly detecting their interactions with ordinary matter.

On the other hand, axion detectors may actually have a fighting chance, the authors write in the journal Physical Review D. Axions are hypothetical particles that have a small mass in the milli-electronvolt (eV) range, making them 500 million times lighter than an electron. Additionally, an axion should have no spin. Detectors such as the Axion Dark Matter Experiment might be able to pickup axions from S1 due to possible bumps in the broad spectrum of axions. In the presence of a strong magnetic field, axions should be converted into photons, which we can see, according to a previous estimate.

While there are over 30 such streams known in our galaxy, S1 is the only one to directly interact with our solar system. What’s more, our paths will intersect for millions of more years. So, even if our technology is not advanced enough to detect dark matter particles, there is still plenty of time for more sensitive detectors to be built.

RelatedPosts

Researchers create a remarkably accurate model of our Universe and its evolution
Scientists just found the first relic galaxy — it’s remained unchanged since the early universe
Dwarf satellite galaxies are challenging the standard cosmological model
Milky Way spins faster
Tags: dark mattermilky way

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

byTibi Puiu
2 weeks ago
Astronomy

These bizarre stars could be burning darkness to survive

byMihai Andrei
1 month ago
News

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

byJordan Strickler
2 months ago
Andromeda Galaxy
News

New Simulations Suggest the Milky Way May Never Smash Into Andromeda

byJordan Strickler
3 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.